ATLAS Roman Pot Detectors: Absolute Luminosity For ATLAS

- · The Measurement of Luminosity in ATLAS
- · Roman Pots and the Scintillating Fiber Detectors
- · Plans for Installation, Commissioning, First Run...

Absolute Luminosity Measurement

- LHC Machine parameters (10% 5%)
 - Use ZDC in pp and heavy ion runs to understand machine parameters
- · Rates of well-calculable processes (5% 3%):

QED: muon-pair production via double-photo-

Roman Pots

QCD: W and Z production

- Luminosity from Coulomb Scattering (~2%):
- · Optical theorem: forward elastic rate + total inelastic rate:
 - needs ~full |n| coverage ATLAS coverage limited!
 - Use σ_{tot} measured by others (TOTEM)
 - Combine machine luminosity with optical theorem

We will pursue all options

ATLAS Forward Detectors

Absolute L from Coulomb Scattering

- Goal: Determine absolute luminosity at IP1 (2-3% precision)
- Measure elastic rate dN/dt in the Coulomb interference region (à la UA4). $|t| \sim 0.00065 \text{ GeV}^2$ or $\theta \sim 3.5 \, \mu \text{rad}$.

This requires:

- special beam optics, special runs
- detectors sensitive to ~1.5 mm from LHC beam axis
 - > thin window next to beam
- detectors with minimal inactive edge (< 100 μm)
- detector resolution well below 100 μm (goal 30 μm)
- · detectors operating in a secondary vacuum of a Roman Pot

Simulation of Elastic Scattering

hit pattern for 10 M elastic events simulated with PYTHIA + MADX for the beam transport

t reconstruction:

$$-t = (p\theta^*)^2 = p^2(\overline{\theta}_x^2 + \overline{\theta}_y^2)$$
$$= p^2 \left(\left(\frac{\overline{x}}{L_{eff,x}} \right)^2 + \left(\frac{\overline{y}}{L_{eff,y}} \right)^2 \right)$$

- special optics
- parallel-to-point focusing
- very high β*

$$L_{eff} = \sqrt{\beta \beta^*} \cdot \sin \Psi$$

$$\Psi_y \approx \frac{\pi}{2}$$

L from Fit to the t-Spectrum

$$\frac{dN}{dt} = L\pi |F_C + F_N|^2
= L \left(\frac{4\pi\alpha^2}{|t|^2} - \frac{\alpha\rho\sigma_{tot}e^{-B|t|/2}}{|t|} + \frac{\sigma_{tot}^2 (1 + \rho^2)e^{-B|t|}}{16\pi} \right)$$

Simulated 10 M events

(equivalent run time: 100 hrs)

fit range: 0.00055-0.055 GeV²

	input	fit	error	corre- lation
L	8.10×10 ²⁶	8.151×10 ²⁶	1.77 %	
σ_{tot}	101.5 mb	101.14 mb	0.9%	-99%
В	18 GeV ⁻²	17.93 GeV²	0.3%	57%
ρ	0.15	0.143	4.3%	89%

large correlation between L and other parameters!

t-Resolution

The t-resolution is dominated by the divergence of the incoming beams.

$$σ'=0.23$$
 μrad

$$-\hat{t} = (p_1 - p_3)^2 \approx (p\theta^*)^2$$

Systematic Uncertainties

```
From Technical Design Report:
                            (%)
beam divergence
                          0.31
detector resolution 0.35
■ detector alignment 1.30 (±10µm)
acceptance
                      0.52
                 1.17 (\Delta \Psi_{Hor})
beam optics
Background subtraction 1.10 (stat)
    \Delta L/L \approx 1.8\%(stat) \oplus 2.2%(syst) = 2.8%
Further study is ongoing...
```

Luminosity Transfer $10^{27} \rightarrow 10^{34}$ cm⁻²s⁻¹

- Bunches are resolved \Rightarrow consider luminosity/bunch \Rightarrow range: ~2 $\times 10^{-4}$ to ~20 interactions/bunch
- · Required dynamic range of the detector: ~20
- Background: must be $<<2 \times 10^{-4}$ interactions per bunch
 - main background is from beam-gas interactions
 - Dynamic vacuum difficult to estimate but at low luminosity we will be close to the static vacuum.
 - Static vacuum \Rightarrow beam gas ~10⁻⁷ interactions /bunch/m
 - We are in the process of performing MC calculation to see how much of this will affect LUCID

Positioning

ATLAS RP Unit

 Based on TOTEM design

· Changes:

- No horizontal pot

 Different mounting of Pot on flanges

- Modifications to respect beam height and to make the extraction of the bottom Pot easier...

Final Pot

Scintillating Fiber Tracker

Concept:

- 64 scintillating fibers
- 0.5mm×0.5mm cross section

DESY Testbeam - November 2005 Luminoshy Messurenson at ATLAS - Developed

Test of Schullating Fibre Prototype Detectors

MESTRACT

Detectors:

S. Adv. P. Berillon, A. Beacht, C. Chalkhaff, L. Ethywingerski, P. D. Gudeno, P. Gusterson, C. Length, M. Happenser, V. Roder, A. Mapalle, U. Microscows, C. Lordon, M. Rijssenbeck, J. Suffrig. Two different M. Thorse, E. Talladakar and Y. Boroloft types were built: TOTAL PH Department, Departs, Seitzschaft. measure light yield, on the astronomy of Suscientes of Lincoln, October Printers efficiency, cross talk, edge sensitivity, resolution, etc.

Base line fiber: SCSF-78, S-type Kuraray 0.5mm-square single-clad

Beam:

 6 GeV electrons Beam spot ~ 1 cm²

Setup:

- Si telescope (~30 μm resolution)
- · MAPMT CAEN QDCs PC

Si₄ Si₂

Trig.

DESY Testbeam published results

ALFA Resolution: $\sigma_{x,y} \approx 36 \ \mu m$

(Possibly increased by multiple scattering of the relatively low energy 6 GeV electron beam)

CERN Testbeam - October 2006

2x(U+V)x64fibers

Overlap Detectors

+ Final Trig.

Detectors

- Two ALFA trackers (larger than at DESY TB)
- Overlap Detectors

Beam

• 230 GeV protons $(\pi^{+/-})$

Setup

• 5 x MAPMT - 5 x PMF - Motherboard - PC

CERN'07 Testbeam: very preliminary

(Reconstructed using 2 x half of ALFA)

 σ_{half} =40µm (MC ideal Geom: σ_{half} =30µm)

- "Online" Results!

Offline analysis ongoing!

Status of the Mechanics

- · Received pre-series Roman Pot Unit at CERN
 - Assembled and being tested by PH/DT1 team
 - Will be a fully operational Roman Pot Unit
 Will be used to develop the control system and the cable routing and patch panels
 - Investigate the precision of the Pot movement:
 Verification of deformations under vacuum
 Assessment of the achievable precision and reproducibility
 - Foreseen to use in 2007 testbeam setup
- · We will start the final procurement after pre-series sign-off
 - 4 Roman Pot Units

Prague Roman Pot Unit

March 30, 2007

M. Rijssenbeek, Small-x Workshop, FNAL

Final front-end electronics

<u>Scheduling</u>

· Tunnel:

- LHC-IP1-Q4 Manual Polarity switches in place
- Cables in place, ancillary elements being procured
- RPU Patch panels being prepared
- Movable vacuum equipment to be procured

Roman Pot Units

- 4 Units to be procured after sign off on pre-series
- Procurement of motors, screws, rails and misc. has started Currently foreseen delivery: Spring-Summer 2007
- Installation in May 2007 seems difficult, not yet impossible We would only install the mechanics, with pots or covers. All locked in safe position. Otherwise, will wait for the 2007/2008 shutdown.

Pots

- First prototype being prepared
 Will be tested under vacuum
 - One or two will be used for the future test beam
 - One or two will be used for the future test beam
- Simulation of RF compatibility ongoing and tests to be done
- Final production in sync with Roman Pot Units production All material procured

· Detectors and electronics:

- Concepts tested and proven suitable for our application
 Improving various details
 plan another beam test in 2007
- Aiming for installation during 2008/09 shutdown

Commissioning: Shutdown 2008/09

- · Commissioning during shutdown:
 - Movements and controls
 - Access procedures
 - Safety procedures
 - Vacuum system
 - Interlocks
 - Simulation of normal and alarm conditions

First Operations: 2009 run

- With standard low- β optics, at moderate luminosity:
 - In "park" position
 Detector commissioning with halo particles
 Background studies
- With high- β optics:
 - Approach to the beam
 - Detector commissioning (1st time)
 - Test on overlap detectors
 - Normal running

Backup Slides

ATLAS Roman Pot locations

Top view of the detector in the pot

