

Results on Inclusive Diffraction From The ZEUS Experiment

Presented by B.Loehr on behalf of ZEUS

Data from the running period 1999-2000.

The last period with the ZEUS Forward Plug Calorimeter (FPC) and the Leading Proton Spectrometer (LPS) installed.

Three methods to extract inclusive diffractive events:

- Leading proton spectrometer
- The M_X method
- Large rapidity gap method

We attempt to get a consistent picture from these three methods using data from the same running period.

Kinematics of DIS and Diffraction

Extraction of diffractive events (I)

1.) Forward proton detection B77 B72 B67 O51,55,58 B47 O42 O30,34,38 B26 B18,22 O6-15 ZEUS umber of even **S**4 S3 S2 **S**5 **S1** $x_{L} \approx 1$ -> diffractively scattered proton ; $X_{I} \approx 1 - X_{IP}$ $t = -\frac{p_T^2}{x_L} - \frac{(1 - x_L)^2}{x_L} M_p^2$ the only method to measure the t-distribution issociation Forward proton tagged events are practically 0.08 ZEUS preliminary free of proton dissociation background. 0.06 0.05 ⊖ 0.05 ⇔ 0.04 0.8 1.0 _{X1} 0.6 0.4 They contain, however, contributions 0.03 from Reggeon exchange at high x_{TP} or low x_{I} . LPS has small acceptance 0.02 0.01 0.02 0.04 0.06 0.08 0.1

2.) The large (pseudo)rapidity (η_{max}) method

 $\eta_{\rm max} = -\ln \tan(\Theta_{\rm min}/2)$

No tracks or energy deposits in calorimeter for rapidities greater than η_{max} or at angles less than $\Theta_{\text{min}}.$

Events tagged by a large rapidity are dominated by diffraction but they contain contributions from proton dissociation and from Reggeon exchange.

XIP

Extraction of diffractive events (II)

3.) The M_x-method

Nondiffractive events : (i)

Rapidity
$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

Property of a produced particle

Uncorrelated particle emission between incoming p-direction and scattered guark.

nondiffractive events

 $\frac{\mathrm{dN}_{\mathrm{part}}}{\mathrm{dN}_{\mathrm{part}}} = \lambda = \mathrm{const.}$ dv

(ii) Diffractive events :

(iii) Nondiffractive + diffractive contributions

$$\frac{dN}{d \ln M_X^2} = D + c \cdot e^{b \cdot \ln M_X^2}$$

D is the diffractive contribution

<u>Two approaches :</u>

1.) take D=const. for a limited range in $\ln M^2_X$

$$for \qquad \ln M_X^2 \leq \ln W^2 - \eta_0$$

Determine diffractive events by subtracting nondiffractive events from measured data bin by bin as calculated from fitted values b and c.

Both approaches give the same results

2.) take D from a BEKW-model (*see later*) parametrization which describes our measured data. This is an iterative procedure.

The ZEUS M_x-Analysis (I)

Example of InM_{X} -distributions for four kinematical bins :

Diffractive data selected by the M_X-method contain proton dissociative events but no contributions from Regge exchange

MC-simulation:

nondiffractive : DJANGOH diffractive : SATRAP proton diss.: SANG

SANG adjusted to fit data which are dominated by proton dissociation

Proton dissociation can be reliably calculated for $M_N > 2.3$ GeV and has been subtracted from data

The ZEUS M_X -results contain contributions from proton dissociation for masses $M_N < 2.3$ GeV.

Small x and Diffraction, 28-30 March 2007, Fermilab

Small x and Diffraction , 28-30 March 2007, Fermilab

Page 8

Fit W-dependence of inclusive DIS and inclusive diffractive DIS cross sections_

Inclusive DIS:

DES

For small x, F_2 rises rapidly as x-> 0

$$F_2 = \mathbf{c} \cdot \mathbf{x}^{-\lambda} \qquad \mathbf{W} \propto \frac{1}{x}$$
$$\lambda = \alpha_{\rm IP}(0) - 1$$

Inclusive diffractive DIS:

Bernd Löhr, DESY

Bernd Löhr, DESY

Ratio of total diffractive cross-section to total DIS cross-section

Ratio plotted at W=220 GeV because only there the full M_X range is covered by measurments

$r = \sigma^{diff}(0.28 < M_X < 35 \text{ GeV})/\sigma^{tot}$

Within the errors of the measurements r is independent of W.

At W=220 GeV, r can be fitted by

 $r = 0.22 - 0.034 \cdot \ln(1+Q^2)$

This logarithmic dependence of the ratio of total diffractive cross-section to the total DIS cross section indicates that diffraction is a leading twist process for not too low Q^2 .

$$\frac{d^4\sigma}{dQ^2 dt dx_{IP} d\beta} = \frac{2\pi\alpha_{em}}{\beta Q^2} [1 - (1 - y)^2] \cdot F_2^{D(4)}(Q^2, t, x_{IP}, \beta)$$

ZEUS neglects the contribution from longitudinal structure function

H1 defines : sizable only at high y

$$\sigma_{\rm r}^{\rm D} = F_2^{\rm D} - \frac{y^2}{1 + (1 - y)^2} F_{\rm L}^{\rm D}$$

If t is not measured : (LRG and M_X-method)

$$\frac{\mathbf{d}^{3}\sigma_{\gamma^{*}\mathbf{p}\to\mathbf{X}\mathbf{N}}^{\text{diff}}}{\mathbf{d}\mathbf{Q}^{2}\mathbf{d}\boldsymbol{\beta}\mathbf{d}\mathbf{x}_{\mathrm{IP}}} = \frac{2\pi\alpha^{2}}{\boldsymbol{\beta}\mathbf{Q}^{4}} \left[1 + (1 - \mathbf{y})^{2}\right] \cdot \mathbf{F}_{2}^{\mathbf{D}(3)} \left(\boldsymbol{\beta}, \mathbf{x}_{\mathrm{IP}}, Q^{2}\right)$$

$$\frac{1}{2M_{X}}\frac{d\sigma_{\gamma^{*}p\to XN}^{diff}\left(M_{X},W,Q^{2}\right)}{dM_{X}}=\frac{4\pi^{2}\alpha}{Q^{2}\left(Q^{2}+M_{X}^{2}\right)}x_{IP}F_{2}^{D(3)}\left(\beta,x_{IP},Q^{2}\right)$$

If $F_2^{D(3)}(\beta, x_{IP}, Q^2)$ is interpreted in terms of quark densities, it specifies the probability to find in a proton which undergoes a diffractive interaction a quark carrying a fraction $x = \beta x_{IP}$ of the proton momentum.

ZEUS modified BEKW Fit

Fit with BEKW model

(Bartels, Ellis, Kowalski and Wüsthoff, 1998)

•
$$x_{IP}F_2^{D(3)} = c_T \cdot F_{q\bar{q}}^T + c_L \cdot F_{q\bar{q}}^L + c_g \cdot F_{q\bar{q}g}^T$$

 $F_{q\bar{q}}^T = (\frac{x_0}{x_{IP}})^{n_T(Q^2)} \cdot \beta(1-\beta),$
 $F_{q\bar{q}}^L = (\frac{x_0}{x_{IP}})^{n_L(Q^2)} \cdot \frac{Q_0^2}{Q^2+Q_0^2} \cdot [\ln(\frac{7}{4} + \frac{Q^2}{4\beta Q_0^2})]^2 \cdot \beta^3(1-2\beta)^2,$
 $F_{q\bar{q}g}^T = (\frac{x_0}{x_{IP}})^{n_g(Q^2)} \cdot \ln(1 + \frac{Q^2}{Q_0^2}) \cdot (1-\beta)^{\gamma}$
assume $n_T(Q^2) = c_4 + c_7 \ln(1 + \frac{Q^2}{Q_0^2}), n_L(Q^2) = c_5 + c_8 \ln(1 + \frac{Q^2}{Q_0^2}),$
 $n_g(Q^2) = c_6 + c_9 \ln(1 + \frac{Q^2}{Q_0^2})$

The ZEUS data support taking $n_T(Q^2) = n_g(Q^2) = n_1 \cdot ln(1+Q^2/Q^2_0)$ and $n_L = 0$

Taking $x_0 = 0.01$ and $Q^2_0 = 0.4 \text{ GeV}^2$ results in the modified BEKW model (BEKW(mod)) with the 5 free papameters :

$$\boldsymbol{c}_{T}$$
 , \boldsymbol{c}_{L} , \boldsymbol{c}_{g} , $\boldsymbol{n}_{1}^{T,g}$, $\boldsymbol{\gamma}$

Small x and Diffraction, 28-30 March 2007, Fermilab

The BEKW model has an effective QCD-type Q²-evolution incorporated.

×_{IP}F₂D(3) Results from the M× 98-99 and M× 99-00 Analyses : Q²-dependence (I)

$x_{IP}F_2D(3)$ Results from the Mx 98-99 and Mx 99-00 Analyses : Q^2 -dependence (II)

<u>Q² dependence of $x_{IP}F_2D(3)$ </u>

The region $x_{IP} \cdot \beta = x < 6 \cdot 10^{-4}$ is dominated by positive scaling violations. For 0.002 < x < 0.02 constancy is observed

x_{IP}F₂D(3) Results from the Mx 98-99 and Mx 99-00 Analyses Comparison with H1 Results (I)

Note: ZEUS results contain contributions from p-dissociation with masses $\rm M_{p-diss}<2.3~GeV$, H1 results contain contributions with masses $\rm ~M_{p-diss}<1.6~GeV.$

ZEUS results do not contain contributions from Reggeon-exchanges, H1 results may contain such contributions for higher x_{TP} .

x_{IP}F₂D(3) Results from the Mx 98-99 and Mx 99-00 Analysis Comparison with H1 Results (II)

Comparison to H1 data

Fair agreement, except maybe for a few $(x_{IP}, \partial \mathbb{Q})$ bins

Note: ZEUS points are shifted to H1 bins using BFKL parametrization. Only those ZEUS point are shown for which the shift was <30%.

10⁴

ZEUS Results from the LRG Method (I)

Bernd Löhr, DESY

DESY

Small x and Diffraction , 28-30 March 2007, Fermilab

Bernd Löhr, DESY

ZEUS : Comparison of Results from the M_X -, and LRG- Method (I)

ZEUS : Comparison of Results from the M_X-, and LRG- Method (II)

- ZEUS presented preliminary results on inclusive diffraction from 3 different methods for the extraction of inclusive diffractive events.
- Results from all 3 methods are derived from data taken during the same time.
- •
- The results span a wide range of the kinematic region up to high Q^2 .
- There is good to reasonable agreement for the results from all 3 methods.
- There is good to reasonable agreement for the Q²-dependence of the structure function between the M_X -method, the LRG-method and the H1 data.
- There is also good agreement compared to results from H1 for the FPS method.
- Work continues to understand some remaining minor differences, in particular with respect to the relative normalisations.
- We try to get a consistent picture out of the results from these three methods.