Small X 2007, M. Ruspa

Small X and Diffraction Workshop FERMILAB, March 28th-31th 2007

Diffractive parton densities and factorization tests at HERA

Marta Ruspa, Univ. Piemonte Orientale, Novara (ITALY)

- H1 inclusive diffractive measurements
- H1 diffractive PDFs
- ZEUS and H1 diffractive final states: jets and open charm

Diffractive DIS at HERA

HERA: 10% of low-x Deep Inelastic Scattering (DIS) events are diffractive

- Q² = virtuality of photon = = (4-momentum exchanged at e vertex)²
- t = (4-momentum exchanged at p vertex)²
 typically: |t|<1 GeV²
- W = invariant mass of γ -p system
- M_X = invariant mass of γ -IP system
- x_{IP} = fraction of proton's momentum
 taken by IP
- ß = Bjorken's variable for the IP
 - = fraction of IP momentum carried by struck quark
 - $= x/x_{IP}$

Diffractive DIS

Probe structure of color singlet exchange (IP) $\rightarrow F_2^D$

Diffractive event selection

QCD factorization in hard diffraction

Diffractive DIS, like inclusive DIS, is factorizable:

[Collins (1998); Trentadue, Veneziano (1994); Berera, Soper (1996)...]

, universal partonic cross section

 $\sigma (\gamma^* p \rightarrow Xp) \approx f_{i/p}(z,Q^2,x_{IP},t) \times \sigma_{\gamma^* p}(z,Q^2)$

Diffractive Parton Distribution Function (DPDF)

 $f_{i/p}(z,Q^2,x_{IP},t)$ expresses the probability to find, with a probe of resolution Q^2 , in a proton, parton i with momentum fraction z, under the condition that the proton remains intact, and emerges with small energy loss, x_{IP} , and momentum transfer, t - the DPDFs are a feature of the proton and evolve according do DGLAP

• Assumption \rightarrow proton vertex factorization:

 $\sigma (\gamma^{\star}p \rightarrow Xp) \approx f_{IP/p}(x_{IP},t) \times f_{i/p}(z,Q^{2}) \times \sigma_{\gamma^{\star}p}(z,Q^{2})$

Regge motivated IP flux

At large x_{IP} , a separately factorizable sub-leading exchange (IR), with different x_{IP} dependence and partonic composition

H1 inclusive diffractive measurements 🐠

 $\sigma_r^{D(3)} \sim F_2^{D(3)} - \gamma^2 / (1 - (1 - \gamma)^2) F_L^{D(3)}$

 $\alpha'_{IP} = 0.06 \pm {}^{0.19}_{0.06} \, GeV^{-2}$

 $\frac{\sigma(M_{\gamma} < 1.6 \text{ GeV})}{\sigma(Y = p)} = 1.23 \pm 0.03 \text{ (stat.)} \pm 0.16 \text{ (syst.)}$

H1 inclusive diffractive measurements

Comparison H1 LRG - H1 FPS

Small X 2007, M. Ruspa

- Fraction of proton dissociation events different for ZEUS and H1 detectors
- ZEUS LRG data normalized to H1 LRG data

9

> Use proton vertex factorization with $a_{IP}(t)$ from FPS and LRG data to

relate data from different x_{IP} values with complementary β , Q^2 coverage

> Exclude data with M_X < 2 GeV or β > 0.8 and with Q^2 < 8.5 GeV²

10

DPDFs

H1 DPDFs Fit A & B

- (error analysis performed)
- Well constrained singlet
- Weakly constrained gluons (exp. at high values of z)

Why is the high z gluon so poorly known?

Low β:
 evolution driven by g → qqbar,
 strong sensitivity to gluons

 High β: relative error on derivative grows,
 q → qg contribution to evolution dominant

Fit A: zg(z, Q₀²) = A(1-z)^B
 Fit B: B = 0
 gluon constant at Q₀²

Hard factorization tests in diffraction

Diffractive dijet production in DIS

Small X 2007, M. Ruspa

z_{IP} = fractional momentum of the diffractive exchange participating in the hard scattering

■ z_{IP} distribution is the most sensitive to gluon DPDFs → difference between fit A and B at high z_{IP}

→ data agree with NLO predictions and support factorization

Statistics sufficient to make combined QCD fit to inclusive and dijets data

15

 \rightarrow Similar conclusion from ZEUS prel results

Small X 2007, M. Ruspa

Combined fit to inclusive and dijet data (Small X 2007, M. Ruspa combined fit (exp. err.) H1 2006 DPDF Fit H1 2006 DPDF Fit B (z) 0.225 elet(z) 0.2 siudlet(z) v. 0.175 z*singlet(z) 0.2 E \rightarrow Combined fit constrains 0.175 quark and gluon densities over 0.15 0.15 a wide range $(0.05 < z_{TP} < 0.9)$ 0.125 0.125 0.1 0.1 H1 PRELIMINARY H1 PRELIMINARY 0.075 0.075 quark quark 0.05 E 0.05 \rightarrow Uncertainty on gluon 0.025 0.025 density reduced ٥Ŀ 0 0.4 0.6 0.2 0.4 0.6 0.8 0.2 0.8 z z $Q^2=25 \text{ GeV}^2$ $Q^2 = 90 \text{ GeV}^2$ z*gluon(z) z*gluon(z) 0.8 H1 PRELIMINARY H1 PRELIMINARY 0.7 0.8 0.6 gluon gluon 0.5 0.6 0.4 E 0.4 0.3 🗄 0.2 0.2 0.1 0 1 ۵

0.2

0.4

 $Q^2=25~GeV^2$

0.6

0.8

z

0.2

0.4

 $Q^2 = 90 \text{ GeV}^2$

0.6

0.8

z

16

 \rightarrow Within the present experimental errors and theoretical uncertainties data agree with NLO predictions and support factorization

Diffractive charm production in DIS

 $^{\bullet}$ Charm contribution to $F_2{}^{\rm D}$ ~20% \rightarrow comparable with charm fraction in inclusive DIS

\rightarrow Data support factorization

Transition from ep to hadron-hadron

Factorisation not expected to hold in pp, $p\overline{p}$ scattering [Kaidalov, Khoze, Martin, Ryskin, Goulianos, Levin., Gotsman, Maor, ..]

Indeed it does not: factor 10 normalization discrepancy when HERA dPDFs are extrapolated to Tevatron

At HERA the resolved photon in photoproduction (PhP) behaves like a hadron:

DIS and direct PhP

resolved PhP

Example Comparison with Tevatron: CDF Jets

Fit A and fit B

predictions in good

agreement at low β .

Diffractive charm production in PhP

 \rightarrow No evidence of factorization breaking but large NLO uncertainties and limited statistics

Diffractive charm production in PhP

22

Ratio diffractive/inclusive

R_D(D*)= 5.7 ± 0.5_{(stat) - 0.4 (syst)} ± 0.3_(p.d.) %

Ratio from NLO calculations: H1 2006 Fit A: 6.0% H1 2006 Fit B: 5.7% LPS Fit: 5.8%

 \rightarrow No evidence of factorization breaking but large NLO uncertainties and limited statistics

Diffractive dijet production in PhP

Small X 2007, M. Ruspa

- \rightarrow Data described in shape by NLO QCD predictions,
- \rightarrow Suppression factor ~ 0.5 common for both direct and resolved photon
- \rightarrow Factorization breaking for dijets in PhP

Summary

- At HERA diffraction is studied within the QCD framework
 - □ 2 experiments, different selection methods
 - many final states under examination
- New DPDFs available to test hard scattering factorization
 - □ H1 fit A, B: different parameterizations at initial scale
 - inclusion of dijet data in the fits provides a much better constraint of the gluon density at high z
- Diffractive charm and dijet DIS data (ZEUS and H1) consistent with NLO predictions based on DPDFs from inclusive data → support factorization
- Diffractive dijet PhP data (H1) suppressed by a factor 2 relative to NLO predictions based on DPDFs from inclusive data, both for direct and resolved processes → seem to indicate breakdown of factorization
- Diffractive charm PhP data (ZEUS and H1): within low statistics and large NLO uncertainties no clear hint of factorization breaking observed