Status and Plans for Structure Functions Analysis at Low x at HERA.

Ewelina Maria Lobodzinska on behalf of ZEUS and H1

F_2 and F_L structure functions

• NC DIS reduced ep cross-section at low Q2:

$$\sigma_{r} = \frac{Q^{2}x}{2\pi\alpha^{2}Y_{+}} \frac{d^{2}\sigma}{dxdQ^{2}} = F_{2}(x,Q^{2}) - f(y)F_{L}(x,Q^{2})$$

$$Y_{+} = 1 + (1 - y)^{2}$$

$$f(y) = \frac{y^{2}}{Y_{+}}$$
dominant
sizable only at
high y

At high y gluon density dominates over see quarks density => FL determines rather directly the gluon distribution (Altarelli-Martinelli relation):

$$F_{L} = \frac{\alpha_{s}}{4 \pi} x^{2} \int_{x}^{1} \frac{dz}{z^{3}} \left[\frac{16}{3} F_{2} + 8 \sum_{q} e_{q}^{2} (1 - \frac{x}{z}) zg \right]$$

HERA closes down in 3 months ... have we learned all we could about the proton structure function?

Proton structure function - HERA's main measurement, main achievement.

4

Ongoing structure function analyses in H1 and ZEUS:

- High precision measurement of F₂ in H1.
- F₂ at high y in ZEUS and H1.
- F_L measurement in ZEUS and H1.

F₂ measurement

Accuracy of F_2 measurement is ~1.7% (H1 99 minimum bias). In the ongoing analysis of 2000 bulk data H1 aims for even higher precision.

Accuracy of the F₂ measurement

LAr Spacal BST CJC BPC

DIS event in H1

Due to improved electron energy measurement, high MC statistics, understanding of noise the precision of 1% may be reached for low x bins. Main sources of uncertainty:

- 1. Electron energy scale in backward calo.
- -0.15% at E'=27GeV
- _P 1% at 7GeV
 - 2. Polar angle of scattered electron0.3 mrad
 - 3. Hadronic energy scale calibration 2% in forward and central calo.
 - -3% in fraction carried by tracks
 4. Noise description up to 10%
 5.Photoproduction background estimation 10% at high y, negligible at low y.

(G.Medin, A.Glazov, T.Lastovicka proceedings from "HERA-LHC workshop")

Kinematics plane coverage

Not too many analyses trying to reach high y region ...

Can we measure F₂ at high y?

Which precision can we achieve?

What are the main problems for this measurement?

F2 at high y - main challenges

- At low Q² y=1-E'/E (E' energy of the scattered electron)
 => at high y low energy electron needs to be identified in a large background of hadrons from photoproduction and also from DIS (high y = low x i.e. HFS are scattered backwards)
- Two main challenges
- Electron finding needed electron finder that efficiently recognizes low energy electron (for high y electron energy is smaller than the energy of the hadronic jet) with relatively small scattering angle
- Photoproduction background electron escapes down the beam pipe, some other particle fakes electron in the calorimeter – needed a tool to remove this background and to estimate its remaining contribution

Photoproduction handling at ZEUS

6m tagger : -> 2% agreement with lumi measurement; -> fully simulated and reconstructed; -> for e+ running 25% of php events can be directly rejected by tagger; -> php MC can be normalized with use of tagger and used for stat. subtraction of php background⁰

Photoproduction handling by H1

-> analysis based only on data, no php MC
 -> requirement of track linked to electron cluster removes neutral php background

-> charge asymmetry factor determined from tagged php events and from "wrong sign" background in e+p and e-p runs

-> "wrong sign" php background subtracted directly, "right sign" background statistically using charge asymmetry factor

E/p ratio for clusters linked to track

F₂ at high y

- Preliminary results of F₂ at high y from ZEUS and H1 expected for DIS 2007
- F₂ at high y measurement a good "training" for F_L measurement, as for LER high y region has to be reached

Predictions for the longitudinal structure function \boldsymbol{F}_{L}

 \mathbf{F}_{L} and the gluon density at low x poorly constrained by present data.

F_L measurement by ZEUS using ISR events

ZEUS

Is it possible to measure the FL structure function with higher precision?

Extraction of the F_L **structure function by H1.**

Bend of cross-section

Can we measure x dependence of F_L for fixed Q^2 ?

FL measurement at HERA

Alan Martin at DIS04:

- "It is inconceivable that HERA will not measure F_L with sufficient precision to determine the gluon. Low energy runs should be done."
 - At March 21st HERA lowered the proton beam energy.
 - Low energy running will take about 3 months.
 - 10 pb⁻¹ should be collected at 460 GeV proton beam energy
 - Both ZEUS and H1 prepare for the $F_{\rm L}$ structure function analysis.

Idea of the measurement

Reduced cross-section $\sigma = F_2 - f(y)F_L$

In order to separate F_2 and F_L cross section measurement at the same x and Q², but different y (i.e. different s, different beam energies) is needed.

Larger y difference \Leftrightarrow higher accuracy of F_L .

Kinematics plane coverage for F_L measurement

 $E_p = 460 \,\,{\rm GeV}$

 $E_{p} = 920 \text{ GeV}$

Low Q^2 acceptance region given by high E_p Large Q^2 acceptance region given by low E_p

Need to reach highest y (lowest E') for LER

Main systematic uncertainties in F₁ measurement by ZEUS

- Event selection:
- HER:
- 16 < E' < 20GeV

LER:

- 4 < E' < 12 GeV
- $\circ 160 < \Theta < 172 \deg$ $\circ 150 < \Theta < 168 \deg$

track for E'>10 GeV

• PhP subtracted directly or statistically with help of 6m tagger and the php MC

Systematic uncertainties:

- Photoproduction background subtraction $\rightarrow 10\%$
- Electron finder + trigger $\rightarrow 1\%$ (high E') 4% (low E')
- Energy scale $\rightarrow 1\%$ (E'=27.5GeV) 2% (E'=4GeV)
- Luminosity uncorrelated $\rightarrow 1\%$
- Luminosity correlated $\rightarrow 2\%$

High Q² : big stat., low syst

Main systematic uncertainties in F₂ measurement by H1

Backward Silicon Tracker – 2006 data

Electron energy measurement down to 3 GeV.

Php background rejected using the tracks and the charge analysis.

- Php background \rightarrow 4% (at y=0.9)
- Energy of scattered electron $\rightarrow 0.2\%$ (3GeV) 2%(27.5 GeV)
- Angle of scattered electron \rightarrow 0.2mrad (BST) 1 mrad
- Uncorrelated eff. (electron ident., trigger, vtx, rad. corr.) $\rightarrow 1$ %

Simulation of FL measurement by H1

The Diffractive Longitudinal Structure Function F_L^D

 \rightarrow vary y at fixed Q², β , x by changing s (i.e. proton beam energy)

Simulation of the measurement of diffractive F_L structure function by H1

Diffractive events determined via the rapidity gap.

Many systematic effects cancel, so diffractive F_L determined to 3 sigma accuracy.

Diffractive F_L has never been measured so far. Important for understanding inclusive diffraction.

Summary

- Analyses of the proton structure functions are ongoing.
- The precision of the F₂ measurement is still being improved
- F₂ at high y is being measured by H1 and ZEUS
- Huge amount of php background and low energy electron identification main problems for high y analyses.
- Low energy run at HERA already started.
- Both ZEUS and H1 prepared to measure F_L.
- Simulations show reasonably good accuracy of F_L measurement.
- Diffractive F_L can also be measured with good accuracy.
- Full precision structure function analysis still to come from HERA.