Results from the PP2PP Experiment at RHIC and Future Plans (withSTAR)
 Włodek Guryn

Brookhaven National Laboratory, Upton, NY, USA

OUTLINE of the TALK

- Description of the experiment
- Elastic scattering results and interpretation
- Future plans with STAR

The Relativistic Heavy Ion Collider

RHIC is a QCD Laboratory:
Nucleus- Nucleus collisions (AuAu, CuCu...); Asym. Nucl. (dAu);
Polarized proton-proton; eRHIC - Future

RHIC $\mathrm{p}^{\uparrow} \mathrm{p}^{\uparrow}$ accelerator complex

Elastic and Inelastic Processes

In t-channel it is an exchange with quantum numbers of vacuum

Elastic Scattering

Central Production

In terms of QCD, Pomeron exchange consists of the exchange of a color singlet combination of gluons. Hence, triggering on forward protons at high (RHIC) energies predominantly selects exchanges mediated by gluonic matter.

Total and Differential Cross Sections, and Polarization Effects in pp Elastic Scattering at RHIC

S. Bültmann, I. H. Chiang, R.E. Chrien, A. Drees, R. Gill, W. Guryn*, J. Landgraf, T.A. Ljubičič, D. Lynn, C. Pearson, P. Pile, A. Rusek, M. Sakitt, S. Tepikian, K. Yip

Brookhaven National Laboratory, USA
J. Chwastowski, B. Pawlik

Institute of Nuclear Physics, Cracow, Poland
M. Haguenauer

Ecole Polytechnique/IN2P3-CNRS, Palaiseau, France
A. A. Bogdanov, S.B. Nurushev, M.F Runtzo, M. N. Strikhanov

Moscow Engineering Physics Institute (MEPHI), Moscow, Russia
I. G. Alekseev, V. P. Kanavets, L. I. Koroleva, B. V. Morozov, D. N. Svirida

ITEP, Moscow, Russia
S. Khodinov, M. Rijssenbeek, L. Whitehead, S. Yeung

SUNY Stony Brook, USA
K. De, N. Guler, J. Li, N. Ozturk

University of Texas at Arlington, USA
A. Sandacz

Institute for Nuclear Studies, Warsaw, Poland

* spokesman

Summary of the Existing Data

Highest energy so far:
pp: 63 GeV (ISR)
$\mathrm{p} \overline{\mathrm{p}}: 1.8 \mathrm{TeV}$ (Tevatron)
pp2pp energy range:
$50 \mathrm{GeV} \leq \sqrt{ } s \leq 500 \mathrm{GeV}$
pp2pp $|t|$-range:
(at $\sqrt{ } s=500 \mathrm{GeV}$)
$4 \cdot 10^{-4} \mathrm{GeV}^{2} \leq|t| \leq 1.3 \mathrm{GeV}^{2}$
One cannot assume that because of the existence of the models, the data in pp at the ISR, and $p \bar{p}$ data at $S p \bar{p} S$ and the Tevatron one can predict with sufficient accuracy do/dt and $\sigma_{\text {tot }}$ in the RHIC $\sqrt{ }$ s range.

PP2PP Forward slope B from 2002 engineering run

Fit $|t|$-distribution with

$$
\begin{aligned}
\frac{d N}{d t}=C & {\left[\frac{4 \pi\left(\alpha G_{E}^{2}\right)^{2}}{t^{2}}\right.} \\
& +\frac{\left(1+\rho^{2}\right) \sigma_{\text {tot }}^{2} e^{+B t}}{16 \pi} \\
& \left.+\frac{(\rho+\Delta \Phi) \alpha G_{E}^{2} \sigma_{\text {tot }} e^{+1 / 2 B t}}{t}\right]
\end{aligned}
$$

Using fits to world data of $\sigma_{\text {tot }}=51.6 \mathrm{mb}$ and $\rho=0.13$

Fit B for $0.010 \mathrm{GeV}^{2} \leq|t| \leq 0.019 \mathrm{GeV}^{2}$
$B=(16.3 \pm 1.6 \pm 1.0) \mathrm{GeV}^{-2}$

Helicity Amplitudes in Elastic Scattering

Five helicity amplitudes describe proton-proton elastic scattering

$$
\begin{aligned}
& \phi_{1}(s, t) \propto\langle++| M|++\rangle \leftarrow \text { non - flip } \\
& \phi_{2}(s, t) \propto\langle++| M|--\rangle \leftarrow \text { double - flip } \\
& \phi_{3}(s, t) \propto\langle+-| M|+-\rangle \leftarrow \text { non - flip } \\
& \phi_{4}(s, t) \propto\langle+-| M|-+\rangle \leftarrow \text { double - flip } \\
& \hline \phi_{5}(s, t) \propto\langle++| M|+-\rangle \leftarrow \text { single - flip }
\end{aligned}
$$

$$
\phi_{i}(s, t)=\phi_{i}^{e m}(s, t)+\phi_{i}^{\text {had }}(s, t)
$$

$$
\phi_{+}=1 / 2\left(\phi_{1}+\phi_{3}\right)
$$

$$
\phi_{-}=1 / 2\left(\phi_{1}-\phi_{3}\right)
$$

$$
\phi_{i}^{\text {had }}=\phi_{i}^{R}+\phi_{i}^{\text {Asympt. }}
$$

Some of the measured quantities in elastic scattering are:
$\sigma_{\text {tot }}(s)=\frac{4 \pi}{s} \operatorname{Im}\left[\phi_{+}(s, t)\right]_{t=0}$, where $\sigma_{\text {tot }}$ gives s dependence of $\phi_{+} \quad$ Optical Theorem $\frac{d \sigma}{d t}=\frac{2 \pi}{s^{2}}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}+\left|\phi_{4}\right|^{2}+4\left|\phi_{5}\right|^{2}\right)$ contributes to the shape of A_{N}

$$
A_{N}(t, \varphi) \propto \frac{\operatorname{Im}\left[\varphi_{5}^{*} \Phi_{+}\right]}{d \sigma / d t} \quad r_{5}=\operatorname{Re} r_{5}+i \operatorname{Im} r_{5}=\frac{m \phi_{5}}{\sqrt{-t} \operatorname{Im} \phi_{+}}
$$

Source of single spin analyzing power A_{N}

$$
A_{N}=\frac{\sigma^{\uparrow}(t)-\sigma^{\downarrow}(t)}{\sigma^{\wedge}(t)+\sigma^{\downarrow}(t)}=C_{1} \phi_{\text {flip }} \phi_{\text {non- flip }}^{\text {had }}+C_{2} \phi_{\text {flip }}^{\text {had }} \phi_{\text {non- flip }}^{e m}
$$

$$
\phi_{5}=r_{5}(s) \frac{\sqrt{-t}}{m_{p}} \operatorname{Im} \frac{1}{2}\left(\phi_{1}+\phi_{3}\right)=r_{5}(s) \frac{\sqrt{-t}}{m_{p}} \operatorname{Im} \phi_{+}
$$

Single spin asymmetry (left -right) A_{N} arises in the CNI region from to the interference of hadronic nonflip amplitude with electromagnetic spin-flip amplitude.

Any difference from the above is an indication of other contributions: hadronic spin flip caused by resonance (Reggeon) or vacuum exchange (Pomeron) contributions.

[^0]
needed phenomenological input: $\sigma_{\text {tot }}, \rho, \delta$ (diff. of Coulomb-hadronic phases) also for nuclear targets em. and had need form factors

The Setup

Roman Pot Stations at RHIC

Small-x and Diffraction

Hit Correlations Before the Cuts

Events with only eight hits
Note: the background appears enhanced because of the "saturation" of the main band

Width is mainly due to beam emittance

$$
\epsilon=15 \pi \mathrm{~mm} \cdot \mathrm{mrad}
$$ spread of vertex position

$$
\sigma_{z}=60 \mathrm{~cm}
$$

After the cuts the background in the final sample is $\approx 0.5 \% \div 2 \%$ depending on y (vertical) coordinate

Results: Full bin $0.01<-\mathrm{t}<0.03(\mathrm{GeV} / \mathrm{c})^{2}$

Fit $\varepsilon_{N} \cos (\varphi)$ dependence to obtain A_{N}

$$
\mathrm{P}_{\mathrm{Y}}(++,--)=0.345 \pm 0.066 \quad \mathrm{P}_{\mathrm{B}}(++,--)=0.532 \pm 0.106
$$

$$
\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{Y}}=0.877 \pm 0.149
$$

$$
\mathrm{P}_{\mathrm{Y}}(+-,-+)=0.476 \pm 0.085
$$

$$
\mathrm{P}_{\mathrm{B}}(+-,-+)=0.430 \pm 0.089
$$

Note: The calculated false asymmetry $\varepsilon_{\mathrm{F}}=-0.0011$ is consistent with measured $\varepsilon_{\mathrm{F}}=-0.0016$

Results: A_{N} and r_{5}

Phys. Lett. B 632, (2006) 167-172

Statistical and systematic errors added in quadratures, 17.0% normalisation error due to beam polarisation uncertainty, not included.

Our result is suggestive at 1σ level of the hadronic spin flip (need more data to resolve).

$\|t\|-r a n g e$, $(\mathbf{G e V} / \mathrm{c})^{2}$	$<\|\mathrm{t}\|>$, $(\mathrm{GeV} / \mathrm{c})^{2}$	\mathbf{A}_{SS}	$\sigma_{\text {Ass (st.+sys) }}$	\mathbf{A}_{NN}	$\sigma_{\text {Ann (st.+sys) }}$
$\mathbf{0 . 0 1 0 - 0 . 0 3 0}$	$\mathbf{0 . 0 1 9}$	$\mathbf{0 . 0 0 3 5}$	$\mathbf{0 . 0 0 8 1}$	$\mathbf{0 . 0 2 9 8}$	$\mathbf{0 . 0 1 6 6}$

A_{N} : Polarized jet target at RHIC

H. Okada et. al Physics Letters B 638450 (2006) and E704 experiment

$$
\phi_{5}^{h a d}=r_{5}(s) \frac{\sqrt{-t}}{2 m_{p}}\left(\phi_{1}^{h a d}+\phi_{3}^{h a d}\right)
$$

$$
\operatorname{Im} \mathrm{r}_{5}=0.002 \pm 0.029
$$

$$
\operatorname{Re} r_{5}=-0.006 \pm 0.007
$$

$$
\chi^{2} / \mathrm{ndf}=10 / 12
$$

uncertainty on the
$\rho(\Delta \rho= \pm 0.03)$ parameter can change at the same level
hadronic spin - flip contribution are small

Calculation of A_{NN} an A_{SS}

$$
\delta(\varphi)=\frac{N^{++}(\varphi) / L^{++}+N^{--}(\varphi) / L^{--}-N^{+-}(\varphi) / L^{+-}-N^{-+}(\varphi) / L^{-+}}{N^{++}(\varphi) / L^{++}+N^{--}(\varphi) / L^{--}+N^{+-}(\varphi) / L^{+-}+N^{-+}(\varphi) / L^{-+}}
$$

Luminosity normalization is done using: 1.The machine bunch intensities: $L^{i j} \sim \Sigma I_{B}^{i} \cdot I_{Y}^{j}$ over bunches with given i, j 2.The inelastic counters

The two methods agreed.
Distributions $\delta(\varphi)$ were fitted with $\left(\mathrm{P}_{1} \cdot \sin ^{2} \varphi+\mathrm{P}_{2} \cdot \cos ^{2} \varphi\right)$ where $\mathrm{P}_{1}=\mathrm{P}_{\mathrm{B}} \cdot \mathrm{P}_{\mathrm{Y}} \cdot \mathrm{A}_{\mathrm{SS}}$ and $\mathrm{P}_{2}=\mathrm{P}_{\mathrm{B}} \cdot \mathrm{P}_{\mathrm{Y}} \cdot \mathrm{A}_{\mathrm{NN}}$

Results: A_{NN} and A_{SS}

PLB 647 (2007) 98-103

$\|t\|-$ range,$(\mathrm{GeV} / \mathrm{c})^{2}$	$\langle \| \mathrm{t} \mid>,(\mathrm{GeV} / \mathrm{c})^{2}$	\mathbf{A}_{SS}	$\sigma_{\text {Ass (stat.+norm.) }}$	\mathbf{A}_{NN}	$\sigma_{\text {Ann (stat.+norm.) }}$
$\mathbf{0 . 0 1 0 - 0 . 0 3 0}$	0.019	0.0035	0.0081	0.0298	0.0166

$$
\begin{aligned}
& r_{2}=\phi_{2} /\left(2 \cdot \operatorname{Im} \phi_{+}\right) \text {, where } \phi_{+}=\frac{1}{2}\left(\phi_{1}+\phi_{3}\right) \\
& \operatorname{Im} \mathrm{r}_{2}=0.0019 \pm 0.0052 \operatorname{Re~}_{2}=-0.025 \pm 0.065
\end{aligned}
$$

r_{2} is consistent with zero, still small (5\%) contribution of Odderon not excluded

For the latest discussion see
T.L. Trueman hep-ph/0604153

Summary

1. We have measured the single spin analyzing power \mathbf{A}_{N} in polarized pp elastic scattering at $\sqrt{ } \mathbf{s}=200 \mathrm{GeV}$, highest to date, in t-range $[0.01,0.03](\mathrm{GeV} / \mathrm{c})^{2}$.
2. The A_{N} is $\approx 4-5 \sigma$ from zero.
3. The A_{N} is $\approx 1 \sigma$ away from a CNI curve, which does not have hadronic spin flip amplitude. This might be suggestive of the hadronic spin flip.
4. Result on $A_{N N}, A_{S S}$ have been obtained, small contribution from Odderon is not excluded
5. In order to understand better underlying dynamics one needs to map $\sqrt{ } \mathrm{s}$ and t dependence of A_{N} and also measure other spin related variables ($A_{N N}, A_{S S}$, $\left.A_{L L}, A_{S L}\right)$.

The program of elastic scattering and inelastic diffraction will continue within STAR experiment at RHIC.

PP2PP Roman Pots and STAR

Need detectors to tag forward protons and detector with good acceptance and particle ID to measure central system

$\mathbf{x}-\mathbf{y}$

Central Production in DPE

Central Production

In the double Pomeron exchange process each proton "emits" a Pomeron and the two Pomerons interact producing a massive system M_{X}.

The massive system could form resonances or consist of jet pairs. Because of the constraints provided by the double Pomeron interaction, glueballs, and other states coupling preferentially to gluons, will be produced with much reduced backgrounds compared to standard hadronic production processes.

Central Production Has a Long History

A search for glueballs and a study of double pomeron exchange at the CERN ISR Nuclear Physics B, Volume 264, 1986, Pages 154-184, T. Åkesson, M. G. Albrow, et al.

 opparztes is left righ: symatitric.
3.6 $\cdot 10^{6}$ events, high statistics $\mathrm{pp} \rightarrow \mathrm{pp} \pi^{+} \pi^{-}$shows behaviour S-wave dominance up to $\mathrm{M}_{\mathrm{x}}=1600 \mathrm{MeV}$

Acceptance Study DPE

With the expected luminosity we can collect about 450,000, triggered DPE events, for which the proton momentum is reconstructed. One assumes a 10μ barn cross section within our acceptance for the DPE process, where it is required that two RPs on each side are used allowing reconstruction of the outgoing proton momentum.

Number of events for which only one proton tag is used is factor of 4-5 higher.

STAR Detector

STAR Detector

Time Projection Chamber $\sigma(\mathrm{dE} / \mathrm{dx}) \approx 8 \%,|\eta|<1$; EM Calorimeter; ToF system... See STAR talks by Yuri Gorbunov and Hank Crawford for more details.

Resonance Signal in $\mathrm{p}+\mathrm{p}$ and $\mathrm{Au}+\mathrm{Au}$ collisions from STAR

Plan for Run 8 and Performance

With a dedicated run including setup and about 40 hrs of data taking:

1. Elastic scattering:

- 100% acceptance for elastic scattering for $0.003<|t|<0.024$;
- 20×10^{6} elastic events: $\Delta \mathrm{b}=0.31(\mathrm{GeV} / \mathrm{c})^{-2}, \Delta \rho=0.01, \Delta \sigma_{\mathrm{tot}}=2-3 \mathrm{mb}$;
- In four t subintervals we shall have 5×106 events in each resulting in corresponding errors $\delta A_{n}=0.0017, \delta A_{n n}=\delta A_{s s}=0.003$.

1. DPE process in Phase I: With luminosity $3 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ we estimate:

- About $4 \cdot 10^{6}$ events with the proton tag, proton in either pot, of the order of the ISR experiment.
- $4.5 \cdot 10^{5}$ DPE events with fully reconstructed proton momentum.

Summary

The physics program of tagged forward protons with STAR at RHIC can:

1. Study standard hadron diffraction both elastic and inelastic and its spin dependence in unexplored t and $\sqrt{ }$ s range;
2. Study the structure of color singlet exchange in the non-perturbative regime of QCD.
3. Search for central production of light and massive systems in double Pomeron exchange process - glueballs.
4. Search for an Odderon - an eigenstate of CGC.

Those studies will add to our understanding of QCD in the non-perturbative regime where calculations are not easy and one has to be guided by measurements.

There is a great potential for important discoveries

[^0]: -B. Z. Kopeliovich and L. I. Lapidus Sov. J. Nucl. Phys. 114 (19) 1974 -N. H. Buttimore, B. Z. Kopeliovich, E. Leader, J. Soffer, T. L. Trueman, Phys. Rev. D59, (1999) 114010.
 -T.L. Trueman hep-ph/0604153

