Key Ingredients in E791 Experiment

Brodsky Mueller Frankfurt Miller Strikman

Small color-dipole moment pion not absorbed; interacts with each nucleon coherently QCD COLOR Transparency

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena

Stan Brodsky SLAC

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 40

Stan Brodsky SLAC

Ashery E791:
 Measure pion LFWF in diffractive dijet production Confirmation of color transparency, gauge theory of strong interactions

A-Dependence results: $\quad \sigma \propto A^{\alpha}$
kt range (GeV/c)

ュ. $25<k_{t}<1.5$
$1.5<k_{t}<2.0$
$2.0<k_{t}<2.5$
α
$1.64+0.06-0.12$
1.52 ± 0.12
1.55 ± 0.16
1.60
α (ст)

1. 25
1.45

Theory predictions; Frankfurt, Miller, Strikman

Conventional Glauber
Theory Ruled Out !
Factor of 7

FermiLab
March 30, 2007

Stan Brodsky SLAC

Color Transparency

A. H. Mueller, sjb

Bertsch, Gunion, Goldhaber, sjb
Frankfurt, Miller, Strikman

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

Key Ingredients in \mathcal{A} shery Experiment

Brodsky, Gunion, Frankfurt, Mueller, Strikman Frankfurt, Miller, Strikman
Iwo-gluon exchange measures the second derivative of the pion light-front wavefunction

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 43

Stan Brodsky SLAC

THE k_{t} DEPENDENCE OF DI-JETS YIELD

$$
\frac{d \sigma}{d k_{t}^{2}} \propto\left|\alpha_{s}\left(k_{t}^{2}\right) G\left(x, k_{t}^{2}\right)\right|^{2}\left|\frac{\partial^{2}}{\partial k_{t}^{2}} \psi\left(u, k_{t}\right)\right|^{2}
$$

W ith $\psi \sim \frac{\phi}{k_{t}^{2}}$, weak $\phi\left(k_{t}^{2}\right)$ and $\alpha_{s}\left(k_{t}^{2}\right)$ dependences and $G\left(x, k_{t}^{2}\right) \sim k_{t}^{1 / 2}: \frac{d \sigma}{d k_{t}} \sim k_{t}^{-6}$

High Transverse momentum dependence consistent with PQCD, ERBL Evolution

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 44

Stan Brodsky SLAC

Diffractive Dissociation of a Pion into Dijets $\pi A \rightarrow \operatorname{JetJet}^{\prime}{ }^{\prime}$

- E789 Fermilab Experiment Ashery et al
- 500 GeV pions collide on nuclei keeping it intact
- Measure momentum of two jets
- Study momentum distributions of pion LF wavefunction

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
45

Stan Brodsky SLAC

Prediction from AdS/CFT: Meson Light Front WF $\psi_{M}\left(x, k_{\perp}^{2}{ }^{0.15}\right.$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 46

Stan Brodsky SLAC

\mathbf{X} distribution of diffractive dijets from the platinum target for $1.25 \leq k_{t} \leq 1.5 \mathrm{GeV} / c$ (left) and for $1.5 \leq k_{t} \leq 2.5 \mathrm{GeV} / c$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Change of x distribution at higher jet transverse momentum ERBL evolution and $A d S / C F T$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
47

Stan Brodsky

SLAC

Space-like pion form factor in holographic model for $\Lambda_{Q C D}=0.2 \mathrm{GeV}$.

Data Compilation from Baldini, Kloe and Volmer

Diffractive Dissociation of Proton into QuarkJets

Frankfurt, Miller, Strikman

Measure Light-Front Wavefunction of proton
Minimat momentum transfer to nucleus $M \propto \sum_{i j}^{3} \frac{\partial^{2}}{\partial \vec{k}_{\perp i} \partial \vec{k}_{\perp j}} \psi_{3}^{p}\left(x_{i}, \vec{k}_{\perp i}\right)$ Nucleus left Intact
conformal invariance - AdS/CFT

$$
\psi_{3}^{p}\left(x_{i}, \vec{k}_{\perp i}\right) \simeq \frac{F_{p}^{2}}{\mathcal{M}^{4}} \quad \mathcal{M}^{2}=\sum_{i} \frac{k_{\perp i}^{2}}{x_{i}}
$$

LHC with forward acceptance

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 49

Stan Brodsky SLAC

The Impact of AdS/CFT on QCD Phenomenology

in collaboration with Guy de Teramond

Maldacena: AdS/CFT: mapping of

$$
A d S_{5} \times S_{5} \text { to conformal } N=4 S U S Y
$$

- QCD not conformal; however, it has some manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- IR fixed point? $\alpha_{s}\left(Q^{2}\right) \simeq$ const at small Q^{2}
- "Semi-classical" approximation to QCD
- Use mapping of conformal group $\mathrm{SO}^{(4,2)}$ to AdS5

FermiLab March 30, 2007

Stan Brodsky SLAC

Infrared-Finite QCD Coupling?

Shirkov Gribov
Dokshitser Siminov Maxwell

Lattice simulation (MILC)

Furui, Nakajima
DSE: Alkofer, Fischer, von Smekal et al.

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena
52

Stan Brodsky SLAC

Conformal behavior: $Q^{2} F_{\pi}\left(Q^{2}\right) \rightarrow$ const

Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2. By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp.
$Q^{4} F_{1}\left(Q^{2}\right) \rightarrow$ const

e-Print Archive: nucl-ex/0607005

G. Huber

Generalized parton distributions from nucleon form-factor da M. Diehl (DESY) , Th. Feldmann (CERN), R. Jakob, P. Kroll (W DESY-04-146, CERN-PH-04-154, WUB-04-08, Aug 2004. 68pp.
Published in Eur.Phys.J.C39:1-39,2005
e-Print Archive: hep-ph/0408173

FermiLab
March 30, 2007
AdS/CFT and Novel QCD Phenomena 53

Stan Brodsky
SLAC

Identify hadron by its interpolating operator at z -- >o

AdS/CFT

- Use mapping of conformal group $\mathrm{SO}_{(4,2)}$ to AdS_{5}
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $\quad x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \quad z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry in interior $0<z<z_{0}$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances $\psi(z) \sim z^{\Delta}$ at $z \rightarrow 0$
- Truncated space simulates "bag" boundary conditions

$$
\psi\left(z_{0}\right)=0 \quad z_{0}=\frac{1}{\Lambda_{Q C D}}
$$

Light meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$
Guy de Teramond SJB

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena
57

Stan Brodsky SLAC

Prediction from AdS/QCD

Only one parameter!

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$. The 56 trajectory corresponds to L even $P=+$ states, and the 70 to L odd $P=-$ states.

Guy de Teramond SJB

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
58

Stan Brodsky SLAC

| String Theory |
| :--- | :--- |

Mapping between LF $(3+1)$ and $A d S_{5}$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
60

Stan Brodsky SLAC

Hadron Form Factors from AdS/CFT

- Propagation of external perturbation suppressed inside AdS.
- At large Q^{2} the important integration region is $z \sim 1 / Q$.

$$
\begin{aligned}
& \mathbf{J}(\mathbf{Q}, \mathbf{z}), \mathbf{\Phi}(\mathbf{z}) \\
& F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \text { Polchinski, Strassler } \\
& \text { de Teramond, sjb }
\end{aligned}
$$

- Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}, \quad \begin{gathered}
\text { Dimensional Quark Counting Rules: } \\
\text { General result from }
\end{gathered}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

Same results using LFWFs.

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
61

Stan Brodsky SLAC

- Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

$$
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \vec{\eta}_{\perp} e^{i \vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)
$$

- From DYW expression for the FF in transverse position space:

$$
\tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \vec{b}_{\perp j} \delta\left(1-x-\sum_{j=1}^{n-1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}-\vec{\eta}_{\perp}\right)\left|\psi_{n}\left(x_{j}, \vec{b}_{\perp j}\right)\right|^{2}
$$

- Compare with the the form factor in AdS space for arbitrary Q :

$$
F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} e^{3 A(z)} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z)
$$

- Holographic variable z is expressed in terms of the average transverse separation distance of the spectator constituents $\vec{\eta}=\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}$

$$
z=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}\right|
$$

FermiLab March 30, 2007

Map AdS/CFT to 3+1 LF Theory

Effective radial equation:
G. de Teramond and sjb

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

Effective

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} .
$$

conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

General solution:

$$
\begin{gathered}
\widetilde{\psi}_{L, k}\left(x, \vec{b}_{\perp}\right)=B_{L, k} \sqrt{x(1-x)} \\
\left.J_{L}(\sqrt{x(1-x})\left|\vec{b}_{\perp}\right| \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right),
\end{gathered}
$$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 63

Stan Brodsky SLAC

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

Truncated Space
Harmonic Oscillator

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena
64

Stan Brodsky SLAC

> Holography: Map AdS/CFT to $3+1$ LF Theory

Relativistic radial equation:
Frame Independent

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Effective conformal potential:

$$
\begin{array}{r}
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2} \quad \text { Karch et al. } \\
\text { add confining potential }
\end{array}
$$

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena 65

Stan Brodsky SLAC

$J=L+1$ vector meson Regge trajectory for $\kappa \simeq 0.54 \mathrm{GeV}$
\mathcal{H} Olographic Harmonic Oscíllator Model: Baryons

$$
\begin{array}{r}
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0, \\
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right) \\
\Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}+\kappa^{2} \zeta \gamma_{5}\right) \\
\left(H_{L F}-\mathcal{M}^{2}\right) \psi(\zeta)=0, \quad H_{L F}=\Pi^{\dagger} \Pi
\end{array}
$$

Uncoupled Schrodinger Equations
Harmonic Oscillator Potential!

$$
\begin{gathered}
\left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 \nu^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2(\nu+1) \kappa^{2}+\mathcal{M}^{2}\right) \psi_{+}(\zeta)=0 \\
\left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4(\nu+1)^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2 \nu \kappa^{2}+\mathcal{M}^{2}\right) \psi_{-}(\zeta)=0, \\
\text { Solution } \begin{array}{c}
\psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
\end{array}, \$ \text {, }
\end{gathered}
$$

Same eigenvalue! $\quad \mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 67

Stan Brodsky SLAC

Hadron Form Factors from AdS/CFT

- Propagation of external perturbation suppressed inside AdS.
- At large Q^{2} the important integration region is $z \sim 1 / Q$.

$$
\begin{aligned}
& \mathbf{J}(\mathbf{Q}, \mathbf{z}), \mathbf{\Phi}(\mathbf{z}) \\
& F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \text { Polchinski, Strassler } \\
& \text { de Teramond, sjb }
\end{aligned}
$$

- Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}, \quad \begin{gathered}
\text { Dimensional Quark Counting Rules: } \\
\text { General result from }
\end{gathered}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

Same results using LFWFs.

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
68

Stan Brodsky SLAC

Spacelike and Timelike Pion form factor from AdS/CFT

G. de Teramond, sjb

One parameter set by pion decay constant

Harmonic Oscillator
Confinement
Current modified by metric

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena
69

Stan Brodsky SLAC

Baryon Form Factors

- Coupling of the extended AdS mode with an external gauge field $A^{\mu}(x, z)$

$$
i g_{5} \int d^{4} x d z \sqrt{g} A_{\mu}(x, z) \bar{\Psi}(x, z) \gamma^{\mu} \Psi(x, z)
$$

where

$$
\begin{aligned}
& \Psi(x, z)=e^{-i P \cdot x}\left[\psi_{+}(z) u_{+}(P)+\psi_{-}(z) u_{-}(P)\right] \\
& \psi_{+}(z)=C z^{2} J_{1}(z M), \quad \psi_{-}(z)=C z^{2} J_{2}(z M)
\end{aligned}
$$

and

$$
\begin{gathered}
u(P)_{ \pm}=\frac{1 \pm \gamma_{5}}{2} u(P) \\
\psi_{+}(z) \equiv \psi^{\uparrow}(z), \quad \psi_{-}(z) \equiv \psi^{\downarrow}(z)
\end{gathered}
$$

the LC \pm spin projection along \hat{z}.

- Constant C determined by charge normalization:

$$
C=\frac{\sqrt{2} \Lambda_{\mathrm{QCD}}}{R^{3 / 2}\left[-J_{0}\left(\beta_{1,1}\right) J_{2}\left(\beta_{1,1}\right)\right]^{1 / 2}}
$$

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena

Nucleon Form Factors

- Consider the spin non-flip form factors in the infinite wall approximation

$$
\begin{aligned}
& F_{+}\left(Q^{2}\right)=g_{+} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
& F_{-}\left(Q^{2}\right)=g_{-} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{-}(z)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(z)$ and $\psi_{-}(z)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left[\left|\psi_{+}(z)\right|^{2}-\left|\psi_{-}(z)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Large Q power scaling: $F_{1}\left(Q^{2}\right) \rightarrow\left[1 / Q^{2}\right]^{2}$.

G. de Teramond, sjb

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
$7 \mathbf{I}$

Stan Brodsky SLAC

Spacelike and Timelike Proton Form Factor from AdS/CFT

$$
G_{M}^{p}\left(q^{2}\right)
$$

Harmonic Oscillator Confinement $q^{2}\left(\mathrm{GeV}^{2}\right)$
One parameter set by pion decay constant
G. de Teramond, sjb
$\kappa=0.424 \mathrm{GeV}$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 73

Stan Brodsky SLAC

Harmonic Oscillator Confinement

Current modified
by metric

$$
F_{2}\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{2}} \Phi_{F}^{\dagger}(z) J(Q, z) \Phi_{I}^{\downarrow}(z)
$$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 74

Stan Brodsky SLAC

