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Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 
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Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

Conventional Glauber 
Theory Ruled Out ! 
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Ashery E791: 
Measure pion LFWF in diffractive dijet production 

Confirmation of color transparency, 
gauge theory of strong interactions 

Theory predictions;
Frankfurt, Mi!er, Strikma#

Factor of 7
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

A. H. Mueller,  sjb
Bertsch, Gunion, Goldhaber, sjb
Frankfurt, Miller, Strikman
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Key Ingredients in Ashery Experiment

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction
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D. Ashery, Tel Aviv University
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High Transverse 
momentum  
dependence 

consistent with 
PQCD, ERBL 
Evolution
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πA→ JetJetA′

ψπ
qq̄(x,!k⊥)

D. Ashery, Tel Aviv University

THE qq̄ MOMENTUM WAVE FUNCTION

MEASURED BY DI-JETS

Fermilab E791 Collaboration, PRL 86, 4768 (2001)

1.5GeV/c ≤ kt ≤ 2.5GeV/c; Q2 ∼ 16 (GeV/c)2 : φ2 > 0.9φ2
Asy

1.25GeV/c ≤ kt ≤ 1.5GeV/c; Q2 ∼ 8 (GeV/c)2 :

φ2 contains contributions from CZ or other non-perturbative wave functions

x

Diffractive Dissociation of a 
Pion into Dijets

• E789 Fermilab Experiment 
Ashery et al

• 500 GeV pions collide on 
nuclei keeping it intact

• Measure momentum of two 
jets

• Study momentum distributions 
of pion LF wavefunction
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Prediction from AdS/CFT: Meson Light Front WF
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)
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They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)
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x x

x

Change  of x distribution at higher jet transverse momentum 
ERBL evolution and AdS/CFT
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Space-like pion form factor in holographic model for ΛQCD = 0.2 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 29
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Diffractive Dissociation of 
Proton  into Quark Jets

Measure Light-Front Wavefunction of proton
Minimal momentum transfer to nucleus

Nucleus left Intact
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Frankfurt, Miller, Strikman
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The Impact of AdS/CFT 
on QCD Phenomenology 
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in collaboration 
with Guy de Teramond

AdS/QCD G. F. de Téramond

5-Dimensional
Anti-de Sitter

Spacetime

4-Dimensional
Flat Spacetime

(hologram)

Black Hole

1-2006
8685A7

z0 = 1/ΛQCD

z

Caltech High Energy Seminar, Feb 6, 2006 Page 3

in collaboration with Guy de Teramond

Changes in 
length scale 
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evolution in the 
5th dimension z 
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AdS/CFT: mapping of 
AdS5 X S5 to conformal N=4 SUSY

• QCD not conformal;  however, it has some 
manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• IR fixed point?

• “Semi-classical” approximation to QCD

• Use mapping of conformal group SO(4,2) to AdS5

51

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
Log_10!q"GeV#$

0.5

1

1.5

2

2.5

3
Α
s
"q#

FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U) + m0
|χp,β〉

〉
.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM −1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Lattice simulation 
(MILC)

Schwinger-Dyson

Infrared-Finite QCD Coupling?

Furui, Nakajima

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.
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FIG. 3: Pion form factor as extracted in this work. Also
shown are e−π elastic data from CERN, and earlier pion elec-
troproduction data from DESY and Jefferson Lab. The ear-
lier Jefferson Lab data are taken from reference [9]. The data
point at Q2 = 1.60 GeV2 from [9] has been shifted from its
central value for visual representation. The curves are from a
Dyson-Schwinger equation (solid, [17]), QCD sum rules (dot-
ted, [14]), dispersion relations with QCD constraint (dashed,
[15]), and from a pQCD calculation (dashed-dotted, [18]).

inance the longitudinal π−/π+ ratios in 2H were exam-
ined. Since the pole term is purely isovector this ratio is
expected to be close to unity and a significant deviation
from unity would indicate the presence of an isoscalar
background. The preliminary analysis of the longitudi-
nal π−/π+ ratios is consistent with unity.

In Figure 3, our results are shown along with re-
sults from CERN, DESY, earlier Jefferson Lab data, and
some representative calculations. Comparing the result
at Q2 = 1.60 GeV2 to the earlier Jefferson Lab data
point at a lower value of W allows for a direct test of the
theoretical model dependence. A higher value of W al-
lows for a measurement at smaller values of −t, at closer
proximity to the pion pole. The data are consistent with
the previous Jefferson Lab Fπ measurement at a value of
Q2 = 1.60 GeV2 and suggest a small model uncertainty
due to fitting the VGL model to the data. The data in-
dicate a one sigma deviation from a monopole form fac-
tor that yields the measured charge radius. That form
factor is up to Q2=2.5 GeV2 indistinguishable from the
solid curve in Figure 3. Various models provide a good
description of the measured values for Fπ up to Q2=1.60
GeV2. The data are well described by the calculation of
Nesterenko and Radyushkin [14], in which a QCD sum
rule framework for the soft contribution to Fπ as well as
an asymptotically dominant hard gluon exchange term
is used. The dispersion relation calculation by Geshken-

bein [15] also agrees well with the data. The data are
also reasonably well described by the Dyson-Schwinger
calculation by Maris and Tandy, which is based on the
Bethe-Salpeter equation with dressed quark and gluon
propagators. All parameters in the latter calculation are
determined without the use of Fπ data [16, 17]. Perturba-
tive QCD calculations of which one is shown in Figure 3
give values of Q2Fπ around 0.10 GeV2 in the region of
our measurements.

In summary, we have measured separated 1H(e,e′π+)n
cross sections at values of Q2=1.60 and 2.45 GeV2 at
W=2.22 GeV. The charged pion form factor was ex-
tracted from the separated longitudinal cross section us-
ing a Regge model. The data are consistent with the
previous Jefferson Lab result at Q2 = 1.60 GeV2. The
data deviate by one sigma from a monopole form factor
obeying the measured charge radius, but are still far from
the values expected from pQCD calculations.
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• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,
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Séminaire Ecole Polytechnique, 25 Juillet 2006 Page 7

G. Huber

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L



 Stan Brodsky
  SLAC

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena

IO 

I I I I I 

q YP --(p”+d, 

0 yp-n-A++ 

0 YP--rr”P 

a yp-TT+N 

A )'p-K+fl 

E 
\ \ \ \ ‘-cl ’ \ \ \ \ 

P 
\ \ \ \ \ \ \ \ I f 

r 
0.01 ’ I I I I I I 

8 IO I2 I4 I6 

S (GeV)* 

Fig. 19 
-. 

L 

s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7

s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7

IO6 

IO5 

IO4 

O3 

O2 

IO0 

10-l 

lo-* 

I I I I I I III I III 

2 

L 

Fig. 20 

s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7
Conformal Invariance:

54



 Stan Brodsky
  SLAC

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena

AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD.

• Normalizable AdS modes Φ(z)
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Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.
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Confinement 
in the 5th 

dimension
z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

Twist dimension 
of baryon

z0 = 1
ΛQCD

z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

de Teramond, sjb

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

Identify hadron by its interpolating operator at z  -- > 0
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• Use mapping of conformal group SO(4,2) to AdS5

• Scale Transformations represented by wavefunction  
in 5th dimension

• Holographic model: Confinement at large distances 
and conformal symmetry in interior

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Truncated space simulates “bag” boundary conditions

Guy de Teramond
SJB 

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

ψ(z0) = 0

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC
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FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC
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ψ(z0) = 0

0 < z < z0
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2NC
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FH(Q2)× [Q2]nH−1 ∼ constant

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0
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ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ
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ψ(z0) = 0
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ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

AdS/CFT
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Guy de Teramond
SJB 

AdS/QCD G. F. de Téramond
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Fig: Light meson orbital spectrum ΛQCD = 0.32 GeV
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Guy de Teramond
SJB 

Only one 
parameter! 

Entire light 
quark baryon 

spectrum

Prediction from  
AdS/QCDAdS/QCD G. F. de Téramond
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆
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ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

Mapping between LF(3+1) and AdS5

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

60



 Stan Brodsky
  SLAC

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena

Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

61

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

Same results using LFWFs.
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AdS/QCD G. F. de Téramond

• Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

F (q2) =
∫ 1

0
dx

∫
d2!η⊥ei!η⊥·!q⊥ ρ̃(x, !η⊥)

• From DYW expression for the FF in transverse position space:

ρ̃(x, !η⊥) =
∑
n

n−1∏
j=1

∫
dxj d2!b⊥j δ(1− x−

n−1∑
j=1

xj) δ(2)(
n−1∑
j=1

xj
!b⊥j − !η⊥)|ψn(xj ,!b⊥j)|2

• Compare with the the form factor in AdS space for arbitrary Q:

F (Q2) = R3
∫ ∞

0

dz

z3
e3A(z)ΦP ′(z) J(Q, z) ΦP (z)

• Holographic variable z is expressed in terms of the average transverse separation distance of the

spectator constituents !η =
∑n−1

j=1 xj
!b⊥j

z =
√

x

1− x

∣∣ n−1∑
j=1

xj
!b⊥j

∣∣
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)
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(√
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)
θ
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, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞
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e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]
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∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)
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which is also the solution for the electromagnetic poten-
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sity function appearing in the light-front formalism with
the corresponding AdS density
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. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found
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. (14)

In the case of two partons ζ2 = x
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⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]
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(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Effective radial equation:

General solution:

G. de Teramond and sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R
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from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1
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∫
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where we have introduced the variable

ζ =
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xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
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)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
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⊥ ≤

Λ−2
QCD
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)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.
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4 Truncated-Space Holographic Model: Baryons

We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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4 Truncated-Space Holographic Model: Baryons

We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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Holographic Harmonic Oscillator Model: Baryons

4.6 Stability of Solutions

Using the positivity of the product

〈ψ|d†d|ψ〉 ≥ 0, (144)

there follows

M2 ≥ 0, if ν2 ≥ 0, (145)

identical to the Breitenlohner-Freedman bound for the scalar case. Thus in principle

a twist-dimension two baryon is allowed by holographic considerations.

4.7 AdS Dirac Equation

Identical results can also be obtained starting from the solution of the Dirac equation

in AdS space

(/D − µR)Ψ(x, z) = 0, (146)

where µ is the fifth dimensional mass. The solution to (146) is [7]

Ψ(z) = Ce−iP ·x [Ψ+(z)U+(P ) + Ψ−(z)U−(P )] , (147)

with

U− =
γµPµ

P
U+. (148)

The physical solutions have plane waves and chiral spinors U(P )± along the Poincaré

coordinates and hadronic invariant mass states PµP µ = M2.

5 Harmonic Oscillator Holographic Model: Baryons

We write the Dirac equation

(αΠ(ζ)−M) ψ(ζ) = 0, (149)

in terms of the matrix-valued operator Π and its adjoint Π†

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γ5 − κ2ζγ5

)
, (150)

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
γ5 + κ2ζγ5

)
, (151)
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with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=

(
2ν + 1

ζ2
− 2κ2

)
γ5. (152)

Since the operator αΠ is self-adjointM is real. Each component satisfies the Dirac

wave equation (
HLF −M2

)
ψ(ζ) = 0, (153)

where the effective light-front Hamiltonian HLF = Π†Π is given by

HLF = − d2

dζ2
+

(
ν + 1

2

)2

ζ2
− ν + 1

2

ζ2
γ5 + κ4ζ2 + κ2(2ν + 1) + κ2γ5. (154)

The light-front wave equation (153)

HLF ψ± =M2ψ±, (155)

leads to the uncoupled light-front wave equations(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2(ν + 1)κ2 +M2

)
ψ+(ζ) = 0, (156)(

d2

dζ2
+

1− 4(ν + 1)2

4ζ2
− κ4ζ2 − 2νκ2 +M2

)
ψ−(ζ) = 0, (157)

with solutions

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2), (158)

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2), (159)

and eigenvalues

M2 = 4κ2(n + ν + 1), (160)

identical for both plus and minus eigenfunctions.

5.1 Two-Component Dirac Equation

The plus and minus chirality components are not independent since they must obey

the first order Dirac equation (149). We use the Weyl representation where γ5 is
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Harmonic Oscillator Potential!Uncoupled Schrodinger Equations

Solution

Same eigenvalue!
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

68

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

Same results using LFWFs.
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Spacelike and Timelike Pion form factor from AdS/CFT

G. de Teramond, sjb 
Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

One parameter - 
set by pion decay 

constant

Harmonic Oscillator 
Confinement

Current modified 
by metric 
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Baryon Form Factors

• Coupling of the extended AdS mode with an external gauge field Aµ(x, z)

ig5

∫
d4x dz

√
g Aµ(x, z) Ψ(x, z)γµΨ(x, z),

where

Ψ(x, z) = e−iP ·x [ψ+(z)u+(P ) + ψ−(z)u−(P )] ,

ψ+(z) = Cz2J1(zM), ψ−(z) = Cz2J2(zM),

and

u(P )± =
1± γ5

2
u(P ).

• In the large P+ limit

ψ+(z) ≡ ψ↑(z), ψ−(z) ≡ ψ↓(z),

the LC± spin projection along ẑ.

• Constant C determined by charge normalization:

C =
√

2ΛQCD

R3/2 [−J0(β1,1)J2(β1,1)]1/2
.

CAQCD, Minneapolis, May 11-14, 2006 Page 2670
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AdS/QCD G. F. de Téramond

• Consider the spin non-flip form factors in the infinite wall approximation

F+(Q2) = g+R3
∫

dz

z3
J(Q, z) |ψ+(z)|2,

F−(Q2) = g−R3
∫

dz

z3
J(Q, z) |ψ−(z)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(z) and ψ−(z) correspond
to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) = R3

∫
dz

z3
J(Q, z)|ψ+(z)|2,

Fn
1 (Q2) = −1

3
R3

∫
dz

z3
J(Q, z)

[|ψ+(z)|2 − |ψ−(z)|2] ,

where F p
1 (0) = 1, Fn

1 (0) = 0.

• LargeQ power scaling: F1(Q2)→ [
1/Q2

]2
.

Caltech High Energy Seminar, Feb 6, 2006 Page 31

Nucleon Form Factors 

71

G. de Teramond, sjb 
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F2(Q2)

Q2(GeV2)

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j
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Harmonic Oscillator Confinement

κ = 0.454 GeV

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F1(Q2)I→F =
∫ dz

z3Φ
↑
F (z)J(Q, z)Φ↑I(z)

F2(Q2)I→F =
∫ dz

z2Φ
↑
F (z)J(Q, z)Φ↓I(z)

Harmonic Osci"ator Confinemen$

F2(Q2)

Q2(GeV2)

Harmonic Oscillator Confinement

κ = 0.454 GeV

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

Truncated Space Confinement

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F1(Q2)I→F =
∫ dz

z3Φ
↑
F (z)J(Q, z)Φ↑I(z)

F2(Q2)I→F =
∫ dz

z2Φ
↑
F (z)J(Q, z)Φ↓I(z)

Λ = 0.2 GeV

G. de Teramond, sjb 
Preliminary

Current modified 
by metric 
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ψ(σ, b⊥)

σ = y−P+

2

|b⊥|

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

ψ(σ, b⊥)

σ = y−P+

2

|b⊥|(GeV−1)

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

AdS/CFT  Holographic Model

3-dimensional photograph:
meson LFWF at fixed LF Time

G. de Teramond
SJB 

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z
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Linear potential(m=0.22 GeV,β=0.3659 GeV)

HO potential(m=0.25 GeV,β=0.3194 GeV)

φ
as

(x)~x(1-x)

φ
AdS/CFT

(x)~[x(1-x)]
1/2

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :

Oberwölz

Π(Q2) = α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9




