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“Hadronization” at the Amplitude Level
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation 
theory;   coalesce quarks via Light-Front Wavefunctions
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General remarks about orbital angular mo-
mentum
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General remarks about orbital angular mo-
mentum
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Invariant under boosts!  Independent of Pμ 
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ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

F.T. < 0|ψ(y1)ψ(y2)ψ(y3)|p > |τi=0

φπ(x, Q) = P+
π

∫ dz−
4π eiπP+

π z−/2

< 0|ψ(0) γ+γ5

2
√

2nC
ψ(z)|π >(Q) |z+=&z⊥=0

p4
T

d3σ
d3p/E

p8
T

d3σ
d3p/E

d3σ
d3p/E

= AF (xT )
pn
T



AdS/CFT and Novel QCD Phenomena  Stan Brodsky
 SLAC

FermiLab
March 30, 2007 6

Creating Hadrons

• Coalescence of co-moving quarks

• Maximal probability at minimum off-shellness

• Hadronization formation at a given light-front 
time described by light-front wavefunction 

• Example in QED:  Formation of anti-hydrogen

• Exclusive amplitudes controlled by LFWS

• LFWFs predicted by AdS/CFT
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p
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d
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Prediction from AdS/CFT: Meson Light Front WF
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Hadronization at the Amplitude Level
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QCD Mechanism for Rapidity Gaps
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Hoyer, Marchal, Peigne, Sannino, sjb
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1Remarkable new insights from AdS/CFT, the duality between    
conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ

10
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ψ(x,k⊥)

HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c
Light-Front Wavefunctions

Invariant under boosts.   Independent of Pµ
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation
Light-Front QCD

12
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i(k1 ∂
∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
2

〉 → ∣∣+ 1
2

+ 1〉 + 1
2

+1 −1∣∣+ 1
2

〉 → ∣∣− 1
2

+ 1〉 − 1
2

+1 0∣∣+ 1
2

〉 → ∣∣+ 1
2

− 1〉 + 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

A+=0 gauge: No unphysical degrees of freedom
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! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :
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N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized
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Pion appears directly in subprocess at large xF
All of the pion momentum transferred to the lepton pair

Lepton Pair produced longitudinally polarized
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Chicago-Princeton
Collaboration

xπ = xq̄

The p/π+ and p̄/π− ratios as a function of
pT increase dramatically to values ∼ 1 as a
function of centrality in Au + Au collisions
at RHIC which was totally unexpected and
is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT

Dramatic change in 
angular distribution at 

large xF

Berger-Brodsky predictio#

 Phys.Rev.Lett.55:2649,1985

Example of a higher-twist 
direct subprocess
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Direct Subprocesses
• Hadron produced directly in subprocess

• Hadronic amplitude physics encompassed in LFWF

• Higher twist in 1/Q2, but dominant at large x or z

• Observed in Drell-Yan reactions at large xF: dramatic 
change in lepton angular distribution

• Merges with exclusive processes at exclusive boundary

• Strength amplified by trigger-bias effect in single-
particle triggers

• Color transparent

18

Berger, Brodsky, Lepage
Brodsky,  Hoyer, Mueller, 

Tang
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p

u u

d

Baryon can be made directly within hard subprocess

nactive =  6
g g

Oberwölz

φp(x1, x2, x3) ∝ Λ2
QCD

α(Q2) " 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pp→ pX) = F (xT ,θCM)
p8
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T
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Collision can produce 3 
collinear quarks 

Coalescence 
within hard 
subprocess

Bjorken
Blankenbecler, Gunion, sjb

Berger, sjb 
Hoyer, et al: Semi-Exclusive

neff = 8
neff = 2nactive -  4

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

Small color-singlet
Color Transparent

Minimal same-side energy

d



 

p
u u

neff = 4

nactive =  4
neff = 2nactive -  4

xT

ε = 1− xT

xT = 2pT√
s

pp→ HX at high pT

Working assumption: leading-twist subpro-
cesses plus jet fragmentation

qq → qq, gq → gq, gg → qq̄, gg → gg

u

p

H

Color Opaque

 Hadron created from 
jet fragmentation

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T
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Crucial Test of Leading -Twist QCD:
Scaling at fixed xT

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T

neff  = 4

Bjorken scaling 
Conformal scaling: neff  =  2 nactive - 4



 

5 10 15 20
pT  !GeV"4.25

4.5

4.75

5

5.25

5.5

5.75

6
neff

PQCD prediction:  Modification of power  fall-off due to 
DGLAP evolution and the Running Coupling

Pirner, Raufeisen, sjb

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T

Key test of PQCD:   power fall-off at fixed xT

neff  ~ 4.5
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We shall assume that at high pT , the inclusive cross section takes a factorized form, even

if the microscopic mechanism is higher twist,

dσ(hahb → hX) =
∑
abc

Ga/ha
(xa)Gb/hb

(xb)dxadxb
1

2ŝ
|Afi|2 dXfDh/c(zc)dzc. (4)

The dimensionless functions Ga/ha
(xa) describe the momentum distributions of partons of

type a in hadron ha, where a may stand for quarks and gluons as well as for composite degrees

of freedom, such as diquarks and intrinsic hadrons. These functions cannot be calculated

perturbatively, except in the limits xa,b → 1. For quarks and gluons, the scale dependence of

the distribution functions is described by the DGLAP evolution equations, but the evolution

of color-neutral degrees of freedom is suppressed by at least one power of the hard scale,

since gluon radiation off color neutral objects is suppressed. Similar observations can be

made for the fragmentation function Dh/c(zc), which accounts for the transition of a parton

c into a hadron h with momentum fraction zc = x1/xa + x2/xb. The amplitude of the hard

subprocess Afi is assumed to be calculable in perturbative QCD. Integration and summation

over all unobserved variables, such as the phase space dXf of the final state, is understood.

By keeping all ratios of Mandelstam variables fixed, the x dependence of the distribution

functions does not affect the scaling behavior of the hadronic cross section. The factorization

hypothesis Eq. (4) then yields the power law

E
d3σ(hahb → hX)

d3p
=

f(t/s, u/s)

snactive−2
, (5)

which reflects the mass dimension of the microscopic amplitude. Hence, the inclusive cross

section multiplied by pn
T with

n = 2nactive − 4, (6)

is a function of the dimensionless variables y and xR only,

E
d3σ(hahb → hX)

d3p
=

F (y, xR)

pn(y,xR)
T

. (7)

This is the desired relation: the pT dependence of the inclusive cross section is directly related

to the number of participants nactive in the microscopic matrix element. In higher twist

processes, the function F (y, xR) also depends on the hadron distribution amplitudes, which
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FIG. 1: The effective power neff according to Eq. (11). The lower curve assumes 4 active fields

and asymptotically approaches neff(nactive = 4, pT → ∞) = 4. Calculations were performed at

xT = 0.03 and y = 0, which are typical values for RHIC.

Here, β0 = 11 − 2Nf/3 is the QCD β-function, CR = CF = 4/3 for quarks and CR =

CA = 3 for gluons. Note the lower integration limit k2
xR

: at large xR, the phase space for

gluon radiation vanishes and QCD scaling violations disappear. Hence, the simple spectator

counting rules become exact at the exclusive boundary.

We shall now investigate, how QCD scaling violations affect xR scaling. For that purpose,

we define an effective power neff (pT ) by taking the logarithmic derivative

neff (pT ) = −d ln E d3σ(hahb→hX)
d3p

d ln(pT )
(11)

of the cross section.

We first concentrate on RHIC kinematics at y = 0, where rather low values of xT ∼ 0.03

can be reached. Therefore, we drop all factors describing the large xR behavior of the cross

section and determine neff from the running coupling only. Different choices of the hard

scale change numerical results by only few percent. We also checked that the (1− xR) term

is numerically irrelevant. Results are shown in Fig. 1. For the lowest order process 2 → 2

process we find that the effective power neff approximately increases by unity. This is close

to what is seen in direct photon production at RHIC (neff ≈ 5) [11].

Following the suggestion of one of us (SJB), the PHENIX collaboration has analyzed

the scaling properties of data [12]. For neutral pions, a value of neff = 6.33 ± 0.54 has

6

In the exclusive limit x1,2 → (1 ± xF )/2 (xF is Feynman x), both momentum fraction ap-

proach unity, so that only valence partons are important. Hence, inclusive hadron production

at very large rapidity is unaffected by gluon saturation. Such coherence effects disappear at

the largest xF . (The authors of Ref. [8] come to a similar conclusion from a different view-

point.) This shows that the high energy limit of QCD cannot be completely described by the

color glass condensate [9]. However, (nearly) exclusive reactions at ΛQCD " pT " √
s still

allow one to study perturbative QCD processes in a kinematic regime where Regge theory

applies.

III. PHENOMENOLOGICAL APPLICATIONS

In real QCD the nominal power laws discussed in the previous section receive corrections

from the breaking of scale invariance in QCD, i.e. from the running coupling and the scale

breaking of structure functions and fragmentation functions. These corrections have been

discussed a long time ago in Ref. [10] but have not yet been studied quantitatively.

Including scaling violations, the inclusive cross section of Eq. (7) changes to

E
d3σ(hahb → hX)

d3p
=

[
αs(p2

T )

p2
T

]nactive−2 (1 − xR)2ns−1+3ξ(pT )

xλ(pT )
R

α2ns
s (k2

xR
)f(y). (9)

The threshold behavior of the cross section follows from spectator counting rules [10]. We

ignore here an extra contribution to this power which arises from helicity mismatch in the

fragmentation process. The strong coupling constant α2ns
s (k2

xR
) (ns is the number of spectator

fields) arises at large momentum fraction, since all spectators must combine their momentum

to produce one high-x quark. This quark is far off-shell with virtuality k2
x = −k2

T +m̃2
q

1−x , so

that the high-x tail of the structure function is calculable in perturbative QCD. Here, kT is

the transverse momentum of the quark and m̃q is related to the quark mass, see Ref. [10]

for details.

Eq. (9) matches smoothly onto the exclusive limit xR → 1. This is still true in the presence

of scaling violations: the correction to the simple power 2ns − 1 due to gluon radiation is

contained in the function

ξ(pT ) =
CR

π

∫ p2
T

k2
xR

dk2
⊥

k2
⊥

αs(k
2
⊥) =

4CR

β0
ln

ln(p2
T /Λ2

QCD)

ln(k2
xR

/Λ2
QCD)

. (10)
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Pirner, Raufeisen, sjb
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Figure 9: (left) xT scaling [52] of direct photon data in p-p and p-p̄ collisions. The quantity plotted is

(
√
s)n×Ed3!/dp3(xT ) with n = 5.0. (right) xT scaling of jet cross sections measured in p-p̄ collisions by

CDF and D0 [55]. The quantity plotted is the ratio of p4T times the invariant cross section as a function of

xT for
√
s= 630 and 1800 GeV. Note that the theory curves are plotted in the same way in order to avoid as

much as possible uncertainties from the various parton distribution functions used.

of approximately 15 GeV/fm3. The theory curve appears to show a reduction in suppression with

increasing pT , while, as noted above, the data appear to be flat to within the errors, which clearly

could still be improved.

It is unreasonable to believe that the properties of the medium have been determined by a

theorist’s line through the data which constrains a few parameters of a model. The model and

the properties of the medium must be able to be verified by more detailed and differential mea-

surements. All models of medium induced energy loss [60] predict a characteristic dependence of

the average energy loss on the length of the medium traversed. This is folded into the theoretical

calculations with added complications that the medium expands during the time of the collision,

etc [61]. In an attempt to separate the effects of the density of the medium and the path length

traversed, PHENIX [33, 62] has studied the dependence of the #0 yield as a function of the an-

gle ($% ) to the reaction plane in Au+Au collisions (see Fig. 12). For a given centrality, variation

of $% gives a variation of the path-length traversed for fixed initial conditions, while varying the

centrality allows the initial conditions to vary. Clearly these data reveal much more activity than

the reaction-plane-integrated RAA (Fig. 11) and merit further study by both experimentalists and

theorists.

The point-like scaling of direct photon production in Au+Au collisions indicated by the ab-

13

E dσ
d3p

(pp→ γX)

√
snE dσ

d3p
(pp→ γX) at fixed xT

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

xF

Scaling of direct 
photon 

production 
consistent with 

PQCD
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a given
√
s fall below the asymptote at successively lower values of xT with increasing

√
s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.

Although xT -scaling provides a rather general test of the validity QCD without reference to details,

the agreement of the PHENIX measurement of the invariant cross section for !0 production in p-p

collisions at
√
s= 200 GeV [30] with NLO pQCD predictions over the range 2.0≤ pT ≤ 15 GeV/c

(Fig. 4) is, nevertheless, impressive.

)
3

c"
-2

G
e

V
"

 (
m

b
3

/d
p

#3
E

*d

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1
a)

PHENIX Data

KKP FF

Kretzer FF

 (
%

)
#/

#
$ -40

-20

0

20

40 b)

0

2

4 c)

 (GeV/c)Tp

0 5 10 15

0

2

4
d)

(D
a

ta
-Q

C
D

)/
Q

C
D

e)
 (GeV/c)

T
p

1 10

)
2

/G
e
V

2
 (

c
d

y
T

d
p

N
2

d

e
v
t

 N
T

 p
!

2
 

1

!9
10

!710

!5
10

!3
10

!110

10
(0!10%)AA T%p+p 

Au+Au 0!10%

Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization
and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0
production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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√
s fall below the asymptote at successively lower values of xT with increasing

√
s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.

Although xT -scaling provides a rather general test of the validity QCD without reference to details,

the agreement of the PHENIX measurement of the invariant cross section for !0 production in p-p

collisions at
√
s= 200 GeV [30] with NLO pQCD predictions over the range 2.0≤ pT ≤ 15 GeV/c

(Fig. 4) is, nevertheless, impressive.
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Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization
and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0
production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization
and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0
production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization
and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0
production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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particle production:

E
d3!

d3p
=

1

p
n(xT ,

√
s)

T

F(xT ) =
1

√
s
n(xT ,

√
s)
G(xT ) , (3.1)

where xT = 2pT/
√
s. The cross section has two factors, a function F(xT ) (G(xT )) which ‘scales’,

i.e. depends only on the ratio of momenta, and a dimensioned factor, 1/pn(xT ,
√
s)

T (1/
√
s
n(xT ,

√
s)
),

where n(xT ,
√
s) equals 4 in lowest-order (LO) calculations, analogous to the 1/q4 form of Ruther-

ford Scattering in QED. The structure and fragmentation functions are all in the F(xT ) (G(xT ))

term. Due to higher-order effects such as the running of the coupling constant, "s(Q2), the evo-

lution of the structure and fragmentation functions, and the initial-state transverse momentum kT ,

n(xT ,
√
s) is not a constant but is a function of xT ,

√
s. Measured values of n(xT ,

√
s) for #0 in p-p

collisions are between 5 and 8 [5].

The scaling and power-law behavior of hard scattering are evident from the
√
s dependence

of the pT dependence of the p-p invariant cross sections. This is shown for nonidentified charged

hadrons, (h+ + h−)/2, in Fig. 3a. At low pT ≤ 1 GeV/c the cross sections exhibit a “thermal”
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exp(−6pT ) dependence, which is largely independent of
√
s, while at high pT there is a power-law

tail, due to hard scattering, which depends strongly on
√
s. The characteristic variation with

√
s at

high pT is produced by the fundamental power-law and scaling dependence of Eqs. 2.1, 3.1. This

is best illustrated by a plot of

√
s
n(xT ,

√
s) ×E

d3!

d3p
= G(xT ) , (3.2)

as a function of xT , with n(xT ,
√
s) = 6.3, which is valid for the xT range of the present RHIC

measurements (Fig. 3b). The data show an asymptotic power law with increasing xT . Data at
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Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization
and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0
production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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Fig. 1. The effective power neff according to Eq. (11). The lower curve assumes
4 active fields and asymptotically approaches neff (na = 4,pT → ∞) = 4. Cal-
culations were performed at xT = 0.03 and y = 0, which are typical values
for RHIC.

Fig. 2. Invariant cross sections for pp → (π+ + π−)/2 + X at three different
energies (

√
s = 19.4, 23.8 and 27.4 GeV) multiplied by p8

T . The power neff = 8
indicates a higher-twist mechanism. The curve shows the (1 − xR)9 threshold
behavior.

out to be about 6.16, which is still within error bars. However,
since next-to-leading (NLO) order perturbative QCD is able to
reproduce RHIC data on pion production, using fragmentation
functions from e+e− annihilation as input [13], we conclude
that pion production is dominated by leading-twist processes.

On the other hand, the Chicago–Princeton data exhibit a
strikingly different power law and could never be described
in the conventional parton model [14]. An analysis of early
data on inclusive π+ production yields n = 8.2 ± 0.5 for
xR = xT ! 0.35, i.e. pT " 3.5 GeV at

√
s ≈ 20 GeV [15].

Similar results are obtained for π−, see Fig. 2. The power
law E d3σ/d3p(pp → π+X) ∝ p−8.2

T giving na = 6 may in-
dicate a quark–quark scattering process which produces in ad-
dition to the incoming quarks a qq̄ pair, which becomes the
observed pion with high transverse momentum. This process
has been analyzed within the constituent interchange model

Fig. 3. Protons produced in AuAu collisions at RHIC do not exhibit clear scal-
ing properties in the available pT range. Shown are data for central (0–5%) and
for peripheral (60–90%) collisions.

(CIM) [1], where an incoming qq̄ pair collides with a quark
by interchanging a quark and antiquark. The CIM is motivated
by the inclusive to exclusive transition mentioned above and is
in good agreement with the Chicago–Princeton (CP) data [15].
The model even can reproduce the absolute normalization of
the inclusive cross section.

Obviously, the production mechanism for high pT hadrons
changes from

√
s = 20 GeV to

√
s = 200 GeV. For constituent

interchange longitudinal momenta of O(1 GeV) can still be
accommodated in the wave function of the proton. When the
relevant longitudinal momenta are about O(10 GeV) at higher
energies, interchange is no longer possible which is shown by
the different reaction mechanisms with increasing energy.

Moreover, for proton production the pT dependence at
Chicago–Princeton energies is also explained by CIM. A value
of n = 12 is a strong indication that higher twists from wave
function effects dominate high pT hadron production around√

s = 20 GeV. Here the produced proton is the result of proton
scattering on a quark. If protons and pions were both produced
by fragmentation as in the Feynman–Field–Fox parton model, it
is hard to understand how a dimensionless fragmentation func-
tion could change n from 8 for pions to 12 for protons.

Since high-pT protons are produced by higher-twist mech-
anisms at fixed target energies, we also investigate the scaling
properties of proton production at RHIC. The points in Fig. 3
were obtained from the 130 GeV data of Ref. [16] and the
200 GeV data of Ref. [17]. Unfortunately, the data do not ex-
tend out to large enough pT and error bars become too large at
high pT to establish xT scaling. It is important to measure in-
clusive proton production out to larger pT for at least two values
of

√
s. From these data one could find out whether proton pro-

duction is leading or higher twist. If protons are produced in
nuclear collisions by parton recombination (see e.g. [18]), the
cross section should fall off exponentially, i.e. there would be
no xT scaling.

4. Nuclear effects

It is interesting to investigate nuclear effects on the ob-
served scaling laws, i.e. to compare the scaling properties of
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FermiLab Measurements
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The model even can reproduce the absolute normalization of
the inclusive cross section.
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changes from
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accommodated in the wave function of the proton. When the
relevant longitudinal momenta are about O(10 GeV) at higher
energies, interchange is no longer possible which is shown by
the different reaction mechanisms with increasing energy.

Moreover, for proton production the pT dependence at
Chicago–Princeton energies is also explained by CIM. A value
of n = 12 is a strong indication that higher twists from wave
function effects dominate high pT hadron production around√

s = 20 GeV. Here the produced proton is the result of proton
scattering on a quark. If protons and pions were both produced
by fragmentation as in the Feynman–Field–Fox parton model, it
is hard to understand how a dimensionless fragmentation func-
tion could change n from 8 for pions to 12 for protons.

Since high-pT protons are produced by higher-twist mech-
anisms at fixed target energies, we also investigate the scaling
properties of proton production at RHIC. The points in Fig. 3
were obtained from the 130 GeV data of Ref. [16] and the
200 GeV data of Ref. [17]. Unfortunately, the data do not ex-
tend out to large enough pT and error bars become too large at
high pT to establish xT scaling. It is important to measure in-
clusive proton production out to larger pT for at least two values
of

√
s. From these data one could find out whether proton pro-

duction is leading or higher twist. If protons are produced in
nuclear collisions by parton recombination (see e.g. [18]), the
cross section should fall off exponentially, i.e. there would be
no xT scaling.

4. Nuclear effects

It is interesting to investigate nuclear effects on the ob-
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neff = 2N = 8
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where the derivative is taken at fixed  and
0CM’ and

Feff(PT) =  In (~1~._G), (5.6.12)

which is calculated at fixed PT and 0CM~These two functions can be extracted directly from the

data. They provide not only an immediate first test of any theory, but also a guide in determining
the types of terms involving different values of N and F that are required in a detailed fit and in
estimates of the masses required. The N and F values then provide clues as to what type of basic

processes are important which then leads to the type of final state correlations that are to be ex-

pected. The functional dependence of Neff and Feff can be computed in models as per eq. (5.2.12).

Because of the variation of the integral I(x
1, x2), Feff can vary from F as G increases even if one

term dominates.

The extractions for the BS data from the tSR and the CP data from FNAL are shown in figs.
5.6.1 and 5.6.2. Since mass corrections will affect the shape Of Neff at small PT’ decreasing its

value there, and since Neff must vanish at PT = 0 if the process is to Feynman scale, the experimen-
tal results clearly show the presence ofN=4, 6, and 8 terms as expected and show little difference

between particle-antiparticle. The Feff curves, however, can be quite different for various particle

types. Their values clearly tend to increase as the energy increases although the errors on Feff are

quite large from the tSR. The Feff curves for K and j5 are higher than for the other particles,

reflecting more bremsstrahlung, and are quite flat, reflecting an origin in the pionization region.

The Feff value for protons is quite small, especially in the FNAL range, characteristic of fragmen-

tation and the protons presence in the initial beam. For the further details on the analysis of these

curves, we refer the reader to the original paper (Blankenbecler, Brodsky and Gunion [44]).

An interesting application of how the Neff~Feff analysis can be used to predict correlations is
provided by the reaction pp --+ itX. Here we expect two leading contributions, (a) N 2, F 5 cor-

responding to the usual parton subprocess p + q --+ p + q where the large PT of the it is balanced by

the muon, and (b)N= 3, F= 4 corresponding to -yq -~ it + q in which the recoil momentum is taken

0 I I I I 2O—~-—---~ I.
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Fig. 5.6.1. Plots ofNeff and Feff from the ISR—CCR data for the reaction pp —°ir°Xfor three energy pairs. The statistical errors

are of the same size as the discrepancies from different energy pairs.
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FIG. 3: Protons produced in AuAu collisions at RHIC do not exhibit clear scaling properties in the

available pT range. Shown are data for central (0 − 5%) and for peripheral (60 − 90%) collisions.

law Ed3σ/d3p(pp → π+X) ∝ p−8.2
T giving nactive = 6 may indicate a quark-quark scattering

process which produces in addition to the incoming quarks a qq̄ pair, which becomes the

observed pion with high transverse momentum. This process has been analyzed within the

Constituent Interchange Model (CIM) [1], where an incoming qq̄ pair collides with a quark

by interchanging a quark and antiquark. The CIM is motivated by the inclusive to exclusive

transition mentioned above and is in good agreement with the Chicago-Princeton (CP) data

[15]. The model even can reproduce the absolute normalization of the inclusive cross section.

Obviously, the production mechanism for high pT hadrons changes from
√

s = 20 GeV to
√

s = 200 GeV. For constituent interchange longitudinal momenta of O(1 GeV) can still be

accommodated in the wave function of the proton. When the relevant longitudinal momenta

are about O(10 GeV) at higher energies, interchange is no longer possible which the different

reaction mechanisms with increasing energy.

Moreover, for proton production the pT dependence at Chicago-Princeton energies is

also explained by CIM. A value of n = 12 is a strong indication that higher twists from

wave function effects dominate high pT hadron production around
√

s = 20 GeV. Here the

produced proton is the result of proton scattering on a quark. If protons and pions were

both produced by fragmentation as in the Feynman-Field-Fox parton model, it is hard to

understand how a dimensionless fragmentation function could change n from 8 for pions to

12 for protons.
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Fig. 5.6.2. Plots ofNeff and Feff from the ISR—BS and FNAL—CP data for charged particles. The FNAI. energy pairs are

(19.4-23.8 GeV) marked by X’s and (23.8--27.4 GeV) marked by dots.

up by a jet of hadrons. Another important application of this analysis is the process pp -+ pX,

since it separates the Drell—Yan N 2 process from hadron-produced muons.

These ‘~effcurves also display an important feature of hard scattering mod~lswhich provides
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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derived from Eq. 3.2, for peripheral and central collisions, by taking the ratio of Ed3!/dp3 at a

given xT for
√
sNN = 130 and 200 GeV, in each case. The "0’s exhibit xT scaling, with the same

T
x

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

)
T

n
(x

2

3

4

5

6

7

8

9

10

0") for 
T

n(x

0-10%

60-80%

T
x

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

2

-
 + h

+
h) for   

T
n(x

0-10%

60-80%

Figure 6: Power-law exponent n(xT ) for "0 and h spectra in central and peripheral Au+Au collisions at√
sNN = 130 and 200 GeV [44].

value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since

10

Review of hard scattering and jet analysis Michael J. Tannenbaum

derived from Eq. 3.2, for peripheral and central collisions, by taking the ratio of Ed3!/dp3 at a

given xT for
√
sNN = 130 and 200 GeV, in each case. The "0’s exhibit xT scaling, with the same

T
x

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

)
T

n
(x

2

3

4

5

6

7

8

9

10

0") for 
T

n(x

0-10%

60-80%

T
x

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

2

-
 + h

+
h) for   

T
n(x

0-10%

60-80%

Figure 6: Power-law exponent n(xT ) for "0 and h spectra in central and peripheral Au+Au collisions at√
sNN = 130 and 200 GeV [44].

value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since

10

Review of hard scattering and jet analysis Michael J. Tannenbaum

derived from Eq. 3.2, for peripheral and central collisions, by taking the ratio of Ed3!/dp3 at a

given xT for
√
sNN = 130 and 200 GeV, in each case. The "0’s exhibit xT scaling, with the same

T
x

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

)
T

n
(x

2

3

4

5

6

7

8

9

10

0") for 
T

n(x

0-10%

60-80%

T
x

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

2

-
 + h

+
h) for   

T
n(x

0-10%

60-80%

Figure 6: Power-law exponent n(xT ) for "0 and h spectra in central and peripheral Au+Au collisions at√
sNN = 130 and 200 GeV [44].

value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since

10

Review of hard scattering and jet analysis Michael J. Tannenbaum

[36] Eqs. 3.4 and 3.5 are exact to the extent that the probability of a member of the !-pair or e+e−-pair to
have any energy up to energy of the parent is constant. This is exact for "0 decay, Eq. 3.4, but is only

approximate for conversions, Eq. 3.5, where asymmetric energies of the pair are somewhat

favored [37].

[37] F. W. Büsser, et al., CCRS Collaboration, Nucl. Phys. B 113, 189–245 (1976).

[38] M. May et al. Phys. Rev. Lett. 35, 407–410 (1975). Note that this article measures the ratio of µ−p
to µ−A in DIS, but precisely the same factor of A for scaling the point-like cross section applies.

[39] R. Vogt Heavy Ion Physics 9, 399 (1999) [nucl-th/9903051].

[40] F. W. Büsser, et al., CCRS Collaboration, Phys. Lett. B 53, 212–216 (1974).

[41] M. J. Tannenbaum, “Lepton and Photon Physics at RHIC”, Proc. 7th Workshop on Quantum

Chromodynamics, La Citadelle, Villefranche-sur-Mer, France, January 6–10, 2003, Eds. H. M. Fried,

B. Muller, Y. Gabellini (World Scientific, Singapore, 2003) pp 25–38 [nucl-ex/0406023].

[42] M. Shimomura, et al., PHENIX Collaboration, Proc. 18th Int’l Conf. on Ultra-Relativistic

Nucleus-Nucleus Collisions–Quark Matter 2005 (QM’05) Budapest, Hungary, Aug. 4–9, 2005, Nucl.

Phys. A 774, 457–460 (2006) [nucl-ex/0510023].

[43] It is important to note that the effective fractional energy loss estimated from the shift in the pT

spectrum is less than the real average fractional energy loss of a parton at a given pT . The effect is

similar to that of trigger bias and for the same reason–the steeply falling pT spectrum. For a given

observed pT , the events at larger p
′
T with larger energy loss tend to be lost under the events with

smaller p′T with smaller energy loss.

[44] S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].

[45] S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003).

[46] V. Greco, C. M. Ko and P. Levai Phys. Rev. Lett. 90, 202302 (2003).

[47] R. J. Fries, B. Müller and C. Nonaka Phys. Rev. Lett. 90, 202303 (2003).

[48] R. C. Hwa Eur. Phys. J. C 43, 233–237 (2005) and references therein.

[49] S. S. Adler et al. PHENIX Collaboration Phys. Rev. C 71, 051902(R) (2005).

[50] H. Fritzsch and P. Minkowski, Phys. Lett. B 69, 316 (1977).

[51] Proceedings of the Polarized Collider Workshop, University Park, PA (1990), Eds. J. Collins,

S. Heppelmann and R. W. Robinett, AIP conf. proc. No. 223, (AIP, New York, 1991).

[52] S. S. Adler et al., PHENIX Collaboration, “Measurement of direct photon production in p+ p

collisions at
√
s= 200 GeV”, Submitted to Phys. Rev. Lett. , hep-ex/0609031.

[53] M. Werlen, “Perturbative photons in pp collisions at RHIC energies”, seminar at BNL, Upton, NY,

June 21, 2005.

http://spin.riken.bnl.gov/rsc/write-up/Riken-BNL-werlen.pdf

[54] P. Aurenche, et al., Eur. Phys. J. C 9, 107-119 (1999).

[55] G. C. Blazey and B. L. Flaugher, Ann. Rev. Nucl. Part. Sci. 49, 633–685 (1999).

[56] J. Adams, et al., STAR Collaboration, Phys. Lett. B 637, 161–169 (2006) [nucl-ex/0601033].

[57] S. J. Brodsky, H. J. Pirner and J. Raufeisen, Phys. Lett. B 637, 58–63 (2006).

39

Peripheral 

Central 
h+ includes protons

Proton production more dominated by 
color-transparent direct high neff subprocesses



AdS/CFT and Novel QCD Phenomena  Stan Brodsky
 SLAC

FermiLab
March 30, 2007

Evidence for  Direct, Higher-Twist 
Subprocesses

• Anomalous power behavior at fixed xT

• Protons more likely to come from direct 
subprocess than pions

• Protons less absorbed than pions in central 
nuclear collisions because of color transparency

• Predicts increasing proton to pion ratio in central 
collisions

• Exclusive-inclusive connection at xT = 1
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 Role of higher twist in hard inclusive reactions

• Hadron can be produced directly in hard subprocess as in exclusive 
reactions

• Sum over reactions

• Trigger bias: No wasted same-side energy

• Exclusive -inclusive connection important at high xT             

• Explanation of neff = 8, 12 observed at ISR, Fermilab: Chicago-Princeton 
experiments

• Direct Hadron Production -- color transparency and reduced same side 
absorption

•  Critical to plot data at fixed xT

• Interpretation of RHIC data is modified if higher twist subprocesses 
play an important role
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AdS/CFT and Novel QCD Phenomena

Fluctuation of a Pion to a 
Compact Color Dipole State

Color-Transparent Fock State For High Transverse 
Momentum Di-Jets

Same Fock State 
Determines Weak 

Decay
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