AdS/CFT and Novel QCD Phenomena Stan Brodsky, SLAC

Small-x and Diffraction Workshop March 28-30, 2007 Fermilab

AdS/QCD

Changes in length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

ovel QCD Phenomena

Formation of Relativistic Anti-Hydrogen

Measured at CERN-LEAR and FermiLab

Munger, Schmidt, sjb

Coalescence of off-shell co-moving positron and antiproton

Wavefunction maximal at small impact separation and equal rapidity

"Hadronization" at the Amplitude Level

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via Light-Front Wavefunctions

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

D Phenomena Stan Brodsky
SLAC

Light-Front Wavefunctions

Invariant under boosts! Independent of P^µ

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

ver QCD Phenomena

Creating Hadrons

- Coalescence of co-moving quarks
- Maximal probability at minimum off-shellness
- Hadronization formation at a given light-front time described by light-front wavefunction $\psi_n^H(x_i, k_{\perp i}, \lambda_i)$
- Example in QED: Formation of anti-hydrogen
- Exclusive amplitudes controlled by LFWS
- LFWFs predicted by AdS/CFT

Prediction from AdS/CFT: Meson Light Front WF

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

ind Novel QCD Phenomena

Stan Brodsky SLAC

 $\propto f_M \sqrt{x(1-x)}$

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

QCD Mechanism for Rapidity Gaps

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\Psi(x,k_{\perp})$$
 $x_i = \frac{k_i^+}{P^+}$

Invariant under boosts. Independent of P^µ

$$H_{LF}^{QCD}|\psi>=M^2|\psi>$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\Psi_{\mathbf{n}}(\mathbf{X}, \mathbf{k}_{\perp}) \quad x_{i} = \frac{k_{i}^{+}}{P^{+}}$$

$$H_{LF}^{QCD}|\psi> = M^{2}|\psi>$$

Invariant under boosts. Independent of P^µ

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

Light-Front QCD Heisenberg Equation

$$H_{LC}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$$

_														
n	Sector	1 q q	2 99	3 qq g	4 वव वव	5 99 9	6 qq gg	7 वव वव g	8 वव वव वव	99 99	10 qq gg g	11 वव वव gg	12 वव वव वव g	13 वववववववव
1	qq			-<	1	•		•	•	•	•	•	•	•
2	99		X	~<	•	~~~~~		•	•		•	•		•
3	qq g	>	>	-	~<		~~~~~	Y. Y	•	•	#	•	•	•
4	qq qq	1	•	>		•	}	~	¥.	•	•	1	•	•
5	99 g	•	<i>></i>		•	X	~~<	•	•	~~~~~		•	•	•
6	qq gg	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**	>		>	-	~<	•		~		•	•
7	ସ୍ଟି ସ୍ଟି g	•	•	5	> -	•	>		~<	•		~		•
8	qq qq qq	•	•	•	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	•	•	>		•	•		~	
9	99 99	•	~ 	•	•	<i>></i>		•	•).(~<	•	•	•
10	qq gg g	•	•	7	•	5	> -		•	>		~<	•	•
11	qq qq gg	•	•	•	73	•	7	>		•	>	1	~<	•
12	ववि ववि ववि g	•	•	•	•	•	•	7	>	•	•	>		~~<
13	वव वव वव वव	•	•	•	•	•	•	•	3	•	•	•	>	+

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

Deep Inelastic Lepton Proton Scattering

Imaginary Part of Forward Virtual Compton Amplitude

$$q(x,Q^2) = \sum_{n} \int_{-\infty}^{k_{\perp}^2 \le Q^2 \perp} d^2k_{\perp} |\Psi_n(x,k_{\perp})|^2$$

$$x = x_q$$

All spin, flavor distributions

Light-Front Wave Functions $\psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Angular Momentum on the Light-Front

A⁺=0 gauge:

No unphysical degrees of freedom

$$J^{z} = \sum_{i=1}^{n} s_{i}^{z} + \sum_{j=1}^{n-1} l_{j}^{z}.$$

Conserved LF Fock state by Fock State

$$l_j^z = -\mathrm{i} \left(k_j^1 \tfrac{\partial}{\partial k_j^2} - k_j^2 \tfrac{\partial}{\partial k_j^1} \right) \quad \text{n-1 orbital angular momenta}$$

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

$\pi N \rightarrow \mu^+ \mu^- X$ at high x_F

In the limit where $(1-x_F)Q^2$ is fixed as $Q^2 \rightarrow \infty$

Virtual photon is longitudinally polarized

Berger and Brodsky, PRL 42 (1979) 940

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

Berger, Lepage, sjb

Pion appears directly in subprocess at large x_F

All of the pion momentum transferred to the lepton pair Lepton Pair produced longitudinally polarized

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

$$\pi^- N \rightarrow \mu^+ \mu^- X$$
 at 80 GeV/c

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2\theta + \rho \sin 2\theta \cos\phi + \omega \sin^2\theta \cos 2\phi.$$

$$\frac{d^2\sigma}{dx_{\pi}d\cos\theta} \propto x_{\pi} \left[(1 - x_{\pi})^2 (1 + \cos^2\theta) + \frac{4}{9} \frac{\langle k_T^2 \rangle}{M^2} \sin^2\theta \right]$$

$$\langle k_T^2 \rangle = 0.62 \pm 0.16 \text{ GeV}^2/c^2$$

Dramatic change in angular distribution at large x_f

Example of a higher-twist direct subprocess

Chicago-Princeton
Collaboration

Phys.Rev.Lett.55:2649,1985

FermiLab March 30, 2007 **AdS/CFT and Novel QCD Phenomena**

17

Stan Bro Stan Stan SLA

Direct Subprocesses

- Hadron produced directly in subprocess
- Hadronic amplitude physics encompassed in LFWF
- Higher twist in 1/Q2, but dominant at large x or z
- Observed in Drell-Yan reactions at large x_F: dramatic change in lepton angular distribution
- Merges with exclusive processes at exclusive boundary
- Strength amplified by trigger-bias effect in singleparticle triggers
 Berger, Brodsky, Lepage
- Color transparent

Brodsky, Hoyer, Mueller, Tang

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena 18

Baryon can be made directly within hard subprocess

Crucial Test of Leading -Twist QCD: Scaling at fixed x_T

$$E\frac{d\sigma}{d^3p}(pN \to \pi X) = \frac{F(x_T, \theta_{CM})}{p_T^{neff}}$$

$$n_{eff} = 4$$

Bjorken scaling

Conformal scaling: $n_{eff} = 2 n_{active} - 4$

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

PQCD prediction: Modification of power fall-off due to DGLAP evolution and the Running Coupling

Key test of PQCD: power fall-off at fixed x_T

$$d\sigma(h_a h_b \to hX) = \sum_{abc} G_{a/h_a}(x_a) G_{b/h_b}(x_b) dx_a dx_b \frac{1}{2\hat{s}} |A_{fi}|^2 dX_f D_{h/c}(z_c) dz_c.$$

$$E\frac{d^3\sigma(h_ah_b\to hX)}{d^3p} = \frac{F(y,x_R)}{p_T^{n(y,x_R)}}.$$

$$n = 2n_{active} - 4$$
,

Pirner, Raufeisen, sjb

$$n_{eff}(p_T) = -\frac{d \ln E \frac{d^3 \sigma(h_a h_b \to hX)}{d^3 p}}{d \ln(p_T)}$$

n_{eff} ~ 4.5

$$E\frac{d^{3}\sigma(h_{a}h_{b}\to hX)}{d^{3}p} = \left[\frac{\alpha_{s}(p_{T}^{2})}{p_{T}^{2}}\right]^{n_{active}-2} \frac{(1-x_{R})^{2n_{s}-1+3\xi(p_{T})}}{x_{R}^{\lambda(p_{T})}} \alpha_{s}^{2n_{s}}(k_{x_{R}}^{2})f(y).$$

$$\xi(p_T) = \frac{C_R}{\pi} \int_{k_{x_R}^2}^{p_T^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \alpha_s(k_{\perp}^2) = \frac{4C_R}{\beta_0} \ln \frac{\ln(p_T^2/\Lambda_{QCD}^2)}{\ln(k_{x_R}^2/\Lambda_{QCD}^2)}.$$

Scaling of direct photon production consistent with PQCD

PHENIX Prompt γ: Comparison to pQCD

- **INCNLO (1.4):**
- NLO pQCD + NLL photon frag. func.

- No K factors, no fudge factors, absolute comparison
- Completely independent calculation.
 - Good control over pQCD prompt photon calculation @ RHIC.

$$E\frac{d\sigma}{d^3p}(pp\to\pi^0X)$$

NLO pQCD predictions Vogelsang

Assumes equal factorization and renormalization scales: $p_{T}/2$, p_{T} , $2p_{T}$

Tannenbaum

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

26

Phenomena Stan Brodsky SLAC

Invariant cross sections for $pp \rightarrow (\pi^+ + \pi^-)/2 + X$

Chicago-Princeton FermiLab Measurements

Far from PQCD leading twist

$$p_T^n \times E \frac{d\sigma}{d^3p} (pp \to \pi X)$$

at fixed
$$x_T$$
, $\theta_{CM} = \frac{\pi}{2}$

$$E\frac{d\sigma}{d^3p}(pp \to \pi X) = \frac{F(x_T, \theta_{CM})}{p_T^8}$$

$$F(x_T, \hat{\theta}_{CM} = \pi/2) = C(1 - x_T)^9$$

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Protons produced in AuAu collisions at RHIC do not exhibit clear scaling properties in the available p_T range. Shown are data for central (0-5%) and for peripheral (60-90%) collisions.

Meson can be made directly within hard subprocess

$$E\frac{d\sigma}{d^3p}(pp \to HX) = \frac{F(x_T, \theta_{CM})}{p_T^{n_{eff}}}$$

Baryon can be made directly within hard subprocess

S. S. Adler *et al.* PHENIX Collaboration *Phys. Rev. Lett.* **91**, 172301 (2003). *Particle ratio changes with centrality!*

Open (filled) points are for π^{\pm} (π^{0}), respectively.

Power-law exponent $n(x_T)$ for π^0 and h spectra in central and peripheral Au+Au collisions at $\sqrt{s_{NN}} = 130$ and 200 GeV

S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].

Proton production more dominated by color-transparent direct high $n_{\rm eff}$ subprocesses

Evidence for Direct, Higher-Twist Subprocesses

- Anomalous power behavior at fixed x_T
- Protons more likely to come from direct subprocess than pions
- Protons less absorbed than pions in central nuclear collisions because of **color transparency**
- Predicts increasing proton to pion ratio in central collisions
- Exclusive-inclusive connection at $x_T = I$

Role of higher twist in hard inclusive reactions

 Hadron can be produced directly in hard subprocess as in exclusive reactions

Semi-Exclusive Reactions -BHMT

Sum over reactions

Hoyer, Mueller, Tang, sjb

- Trigger bias: No wasted same-side energy
- Exclusive -inclusive connection important at high x_T
- Explanation of n_{eff}= 8, 12 observed at ISR, Fermilab: Chicago-Princeton experiments
- Direct Hadron Production -- color transparency and reduced same side absorption
- Critical to plot data at fixed x_T
- Interpretation of RHIC data is modified if higher twist subprocesses play an important role

Fluctuation of a Pion to a Compact Color Dipole State

Color-Transparent Fock State For High Transverse Momentum Di-Jets

Same Fock State Determines Weak Decay

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena 38