

Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference of Two-Step and One-Step Processes *Pomeron Exchange*

• Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange

Antishadowing is Not Universal!
Electromagnetic and weak currents:
Hu different nuclear effects !
Potentially significant for NuTeV Anomaly}

Jian-Jun Yang Ivan Schmidt Hung Jung Lu sjb

FermiLabAdS/CFT and Novel QCD PhenomenaStMarch 30, 2007118

The Odderon

- Three-Gluon Exchange, C= -, J=1, Nearly Real Phase **BFKL**
- Interference of 2-gluon and 3-gluon exchange leads to matter/ antimatter asymmetries
- Asymmetry in jet asymmetry in $\gamma p \rightarrow c \bar{c} p$ e-p collider test
- Analogous to lepton energy and angle asymmetry $\gamma Z \rightarrow e^+ e^- Z$
- Pion Asymmetry in $\gamma p \rightarrow \pi^+ \pi^- p$

Odderon: Another source of antishadowing

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Stan Brodsky SLAC

119

 $|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ...constituents

The Light Front Fock State Wavefunctions

 $\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks,

Fixed LF time

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena 120

Stan Brodsky SLAC

Hoyer, Peterson, Sakai, sjb

Intrínsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Colo-Octet Fock State!

- Probability $P_{Q\bar{Q}} \propto \frac{1}{M_Q^2}$ $P_{Q\bar{Q}Q\bar{Q}} \sim \alpha_s^2 P_{Q\bar{Q}}$ $P_{c\bar{c}/p} \simeq 1\%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	121	SLAC

Measure c(x) in Deep Inelastic Lepton-Proton. Scattering

 $|uudc\bar{c} > \text{Fluctuation in Proton}$ QCD: Probability $\frac{\sim \Lambda_{QCD}^2}{M_Q^2}$ $|e^+e^-\ell^+\ell^- > \text{Fluctuation in Positronium}$ QED: Probability $\frac{\sim (m_e\alpha)^4}{M_\ell^4}$

OPE derivation - M.Polyakov et al.

 $c\bar{c}$ in Color Octet

Distribution peaks at equal rapidity (velocity) Therefore heavy particles carry the largest momentum fractions

Hígh x charm!

 $\hat{x}_i = \frac{m_{\perp i}}{\sum_{j=1}^{n} m_{\perp j}}$

Hoyer, Peterson, Sakai, sjb

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce J/ψ , Λ_c and other Charm Hadrons at High x_F

FermiLabAdS/CFT and Novel QCD PhenomenaStan BrodskyMarch 30, 2007125SLAC

SELEX Λ_c^+ Studies – Momentum Dependence

- Production similar for baryon, antibaryon from π beam at all x_F
- Baryon beams make antibaryons chiefly at small x_F but not large x_F : *not* simply fragmentation

• High statistics Σ data suggest cross section enhancement at very large x_F – idea originally from Pythia color drag.

Model similar to Intrinsic Charm

Predictions for Inclusive Charm ProductionDistributions at the ISR. Assumes active and spectator charm distribution in proton patterned on IC, plus coalescence of valence and charm quarks.

V. D. Barger, F. Halzen and W. Y. Keung,

"The Central And Diffractive Components Of Charm Production,"

Phys. Rev. D 25, 112 (1982).

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Stan Brodsky SLAC

127

• EMC data:
$$c(x, Q^2) > 30 \times DGLAP$$

 $Q^2 = 75 \text{ GeV}^2$, $x = 0.42$

• High
$$x_F \ pp \to J/\psi X$$

• High
$$x_F \ pp \rightarrow J/\psi J/\psi X$$

• High $x_F pp \rightarrow \Lambda_c X$

• High
$$x_F \ pp \to \Lambda_b X$$

• High
$$x_F \ pp \to \Xi(ccd)X$$
 (SELEX)

C.H. Chang, J.P. Ma, C.F. Qiao and X.G.Wu, Hadronic production of the doubly charmed baryon Xi/cc with intrinsic charm," arXiv:hep-ph/0610205.

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	128	SLAC

Production of a Double-Charm Baryon

SELEX high x_F $< x_F >= 0.33$

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

129

 $\begin{array}{c} \textit{Production of Two} \\ \textit{Charmonia at High } x_F \end{array}$

Excludes color drag model

$$\pi A \rightarrow J/\psi J/\psi X$$

Intrinsic charm contribution to double quarkonium hadroproduction *

R. Vogt^a, S.J. Brodsky^b

The probability distribution for a general *n*-parti intrinsic $c\overline{c}$ Fock state as a function of x and k_T written as

$$\frac{dP_{ic}}{\prod_{i=1}^{n} dx_{i}d^{2}k_{T,i}} = N_{n}\alpha_{s}^{4}(M_{c\bar{c}}) \frac{\delta(\sum_{i=1}^{n} k_{T,i})\delta(1-\sum_{i=1}^{n} x_{i})}{(m_{h}^{2}-\sum_{i=1}^{n}(m_{T,i}^{2}/x_{i}))^{2}},$$

Fig. 3. The $\psi\psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J/ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^- N$ data at 150 and 280 GeV/c [1]. The $x_{\psi\psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J/ψ 's is twice the number of pairs.

NA₃ Data

FermiLabAdS/CFT and Novel QCD PhenomenaStan BrodskyMarch 30, 2007131SLAC

P. Hoyer, M. Vanttinen (Helsinki U.), U. Sukhatme (Illinois U., Chicago). HU-TFT-90-14, May 1990. 7pp. Published in Phys.Lett.B246:217-220,1990

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	132	SLAC

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

I34

J. Badier et al, NA3

$$\frac{d\sigma}{dx_F}(pA \to J/\psi X) = A^1 \frac{d\sigma_1}{dx_F} + A^{2/3} \frac{d\sigma_{2/3}}{dx_F}$$

$$A^1$$
 component

Fits conventional PQCD subprocesses

p 200 GeV/c

Excess beyond conventional PQCD subprocesses

• IC Explains Anomalous $\alpha(x_F)$ not $\alpha(x_2)$ dependence of $pA \rightarrow J/\psi X$ (Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains $A^{2/3}$ behavior at high x_F (NA3, Fermilab) Color Opaqueness (Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains $J/\psi \rightarrow \rho \pi$ puzzle (Karliner, SJB)

• IC leads to new effects in B decay (Gardner, SJB)

Higgs production at $x_F = 0.8$

March

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
arch 30, 2007	137	SLAC

Kopeliovitch, Schmidt, Soffer, sjb

Intrinsic Charm Mechanism for Exclusive Diffraction Production

$$pp \to p + J/\psi + p$$

$$x_{J/\psi} = x_c + x_{\bar{c}}$$

Produces (C = -) $J/\psi, \Upsilon$

Same IC mechanism explains $A^{2/3}$ high $x_F~J/\psi$ hadroproduction

Intrinsic $c\bar{c}$ pair formed in color octet 8_C in pro-ton wavefunctionLarge Color DipoleCollision produces color-singlet J/ψ throughcolor exchangeRHIC Experiment

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	138	SLAC

Kopeliovitch, Schmidt, sjb

Intrínsic Charm and Bottom Contribution to Inclusive Higgs Production

Doubly diffractive Higgs production $pp \rightarrow p + H + p$

Nucleus-Nucleus at the LHC

De Roeck, V.A. Khoze, A.D.Martin, R.Orava M.G.Ryskin,

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	140	SLAC

Intrinsic Charm Mechanism for Exclusive Diffractive High-X_F Higgs Production.

$pp \rightarrow p + H + p$

Also: intrinsic bottom, top

Kopeliovitch, Schmidt, Soffer, sjb

Higgs can have 80% of Proton Momentum!

RHIC Experiment

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena 141

Intrinsic Charm Mechanism for Exclusive Diffraction Production

Timelike Test of Charm Distribution in Proton

Intrínsic charm model: predict dual spectator charm hadrons at same rapidity as proton: high z

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena

Probing Hot QCD Matter with Hard-Scattered Probes

John Harris (Yale) ISSP'06 Erice, Sicily, Italy, 29 Aug – 7 Sep 2006

What is the dynamical mechanism which creates the QGP?

- How do the parameters of the QGP depend on the initial and final state conditions?
- A dynamical model: "Gluonic Laser"

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena 148

Gluoníc Laser

Gluonic bremsstrahlung from initial hard scattering backscatters on nuclear ``mirrors"

March 30, 2007

Possible time sequence of a RHIC Ion-Ion Collision

- Nuclei collide; nucleons overlap within an ellipse
- Initial hard collision between quarks and/or gluons producing high $p_{\rm T}$ trigger hadron or photon
- Induced gluon radiation radiated from initial parton collision
- collinear radiation back-scatters on other incoming partons
- Cascading gluons creates multi-parton quark-gluon plasma within ellipse, thermalization
- Stimilated radiation contributes to energy loss of away-side jet
- Sidewise pressure creates hadronic energy along minor axis -- yields planar $\cos 2\phi$ correlation: v₂
- Same final state for high p_T direct photons and mesons
- Baryons formed in higher-twist double-scattering process at high x_T ; double induced radiation and thus double v_2 .

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	150	SLAC

Ridge created by trigger bias (Cronin effect)

Momenta of initial colored partons biased towards trigger

Soft gluon radiation from initial state partons emitted in plane of production; fills rapidity

FermiLab March 30, 2007 AdS/CFT and Novel QCD Phenomena 151

Many Heavy-Ion Two-Photon Tests

- All Exclusive Final States
- Inclusive Reactions from Photon Structure Function
- Virtuality of photon limited by nuclear size
- Test of Pomeron, Odderon
- Charge asymmetry from Photon-Pomeron or Higher Order QED interference
- Coulomb-diffractive on one nucleus
- Pure QED from Light-by-Light

AdS/CFT and Novel QCD Phenomena 152

Stan Brodsky SLAC

FermiLab March 30, 2007

QCD Opportunities at B-Factories

- Fundamental tests of hadron structure, dynamics, and wavefunctions
- Tests of novel nonperturbative and perturbative QCD phenomena
- Hadronization at the amplitude level
- Scale-fixed predictions, commensurate scale relations
- Tests of AdS/CFT holography
- Production of new gluonium, heavy quark, and C=+ states
- Novel diffraction, spin, and fractional charge tests

AdS/CFT and Novel QCD Phenomena 153

Stan Brodsky SLAC

FermiLab March 30, 2007

Topícs

- Hadronization at the Amplitude Level and AdS/CFT
- Diffractive Dijets and LFWFs
- Direct Processes
- Intrinsic Heavy Quark Distributions and Novel Higgs Production Mechanisms
- Theory of Shadowing and AntiShadowing
- Leading Twist Diffraction
- Fixed x_T scaling
- Dangling Gluons
- Gluon Laser

FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	154	SLAC