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FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(
1
2
mxBx

−)
(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡ qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

,

SLAC-PUB-11615

UFIFT-HEP-

Proton Optics: Light-Front Wave Functions

and Deeply Virtual Compton Scattering in Longitudinal

Coordinate Space

S. J. Brodskya, D. Chakrabartib, A. Harindranathc, A. Mukherjeed, J. P. Varye,a,f

a Stanford Linear Accelerator Center,

Stanford University, Stanford, California 94309, USA.

b Department of Physics, University of Florida, Gainesville, FL-32611-8440, USA.

c Saha Institute of Nuclear Physics,

1/AF Bidhannagar, Kolkata 700064, India.

d Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076, India.

e Department of Physics and Astronomy,

Iowa State University, Ames, Iowa 50011, USA.

f Lawrence Livermore National Laboratory,

L-414, 7000 East Avenue, Livermore, California, 94551, USA.

(Dated: February 17, 2006)

1



 Stan Brodsky
  SLAC

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena
78

SLAC-PUB-11615

UFIFT-HEP-

Proton Optics: Light-Front Wave Functions

and Deeply Virtual Compton Scattering in Longitudinal

Coordinate Space

S. J. Brodskya, D. Chakrabartib, A. Harindranathc, A. Mukherjeed, J. P. Varye,a,f

a Stanford Linear Accelerator Center,

Stanford University, Stanford, California 94309, USA.

b Department of Physics, University of Florida, Gainesville, FL-32611-8440, USA.

c Saha Institute of Nuclear Physics,

1/AF Bidhannagar, Kolkata 700064, India.

d Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076, India.

e Department of Physics and Astronomy,

Iowa State University, Ames, Iowa 50011, USA.

f Lawrence Livermore National Laboratory,

L-414, 7000 East Avenue, Livermore, California, 94551, USA.

(Dated: February 17, 2006)

1

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P+

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.
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Bremsstrahlung

DGLAP Evolution
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Conventional wisdom:  
Final-state interactions of struck quark can be neglected
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Physics of Rescattering

• Diffractive DIS: New Insights into Final State 
Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability 
Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon
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T-OddPseudo-
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S

current 
quark jet

final state 
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spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries Leading Twist 

Sivers Effect

!Sp ·!q×!pq

D. S. Hwang, 
I. A. Schmidt, 

sjb

Light-Front Wavefunction  
S and P- Waves

QCD S- and P-
Coulomb Phases
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark!

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect; gauge 
independent

• Unexpected QCD Effect -- thought to be zero!

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD Coulomb phase at soft scale

• Measure in jet trigger or leading hadron

• Sum of Sivers Functions for all quarks and gluons vanishes.                                 
(Zero gravito-anomalous magnetic moment: B(0)= 0)

!S ·!p jet×!q

!S ·!p jet×!qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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N.C.R. Makins, NNPSS, July 28, 2006
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz != 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model
Schmidt, Lu: Hermes

charge pattern follow quark 
contributions to anomalous 

moment
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Single Spin Asymmetry In the Drell Yan Process
!Sp ·!p×!qγ∗
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver’s Effect]Proportional

to the Proton Anomalous Moment and αs.
Opposite Sign to DIS! No Factorization

Collins; 
Hwang, Schmidt. 

sjb

Predict Opposite Sign SSA in DY !
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*
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Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-
inclusive DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(
1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ

)
, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈
H22 − H11

1 + H33

〉
. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiatio%
ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!

Boer, Hwang, sjb
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(
1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ

)
, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):

Model: Boer,
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Dangling Gluons
• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are not 
probability distributions

• Nuclear Shadowing, Antishadowing

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY               correlation at leading twist from double ISI-- not 
given by standard PQCD factorization 

• Wilson Line Effects not 1 in LCG

• Must correct hard subprocesses for initial and final-state soft 
gluon attachments

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2

Hoyer, Marchal, Peigne, Sannino, sjb
Bodwin, Lepage, sjb
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

96

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Sum Eikonal Interactions
Similar to Color-Dipole Model

Same result obtained in Lab or Parton q+=0 Fram&

Final-state interactions included
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S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne
and F. Sannino, Phys. Rev. D 65, 114025 (2002)
[arXiv:hep-ph/0104291].
S. J. Brodsky, R. Enberg, P. Hoyer and G. Ingel-
man, arXiv:hep-ph/0409119.
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Also describes: vector meson leptoproduction BGMFS
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + pTimelike Pomero#
Large Rapidity Gap Events 

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = |yH − yX |

C= +    Gluonium Trajectory 

Bjorken, Lu, sjb
Kopeliovich, 
Schmidt, sjb

e+e− → H+H−+ X

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |

e+e− → H+H−+ X

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Timelike Oddero#
Large Rapidity Gap Events 

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = |yH − yX |

e+e− → H+H−+ X

H+H− asymmetry from Odderon-Pomeron
interference

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |

C= -    Gluonium Trajectory 

Kopeliovich, 
Schmidt, sjb
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Predict: Reduced DDIS/DIS for Heavy Quarks

See also: Bartels et al

Kopeliovitch, Schmidt, sjb

Higher Twist 
Diffraction Fraction

P ’
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b⊥ = O(1/M)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)Reproduces lab-frame color dipole approach
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P
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γ

F γ
2 (x, Q2) ∼ α

αs(Q2)
f(x)

ρ0

γ∗γ → X + V 0

γ

F γ
2 (x, Q2) ∼ α

αs(Q2)
f(x)

ρ0

γ∗γ → X + V 0

Measure in 

γ

F γ
2 (x, Q2) ∼ α

αs(Q2)
f(x)

ρ0

γ∗γ → X + V 0

eγ → eX+ρ
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 Diffractive Hadron-Hadron 
Hard Collisions

• Single diffractive + high PT 

• Double diffractive + high PT 

• Heavy quarks diffractive

• Lepton pair diffractive  (Berman, Levy, Yan 1969)

• Nuclear dependence 

Bartels, Goulianis,
Mueller, BFKL, 

Kovchegov, Maor, Khoze, 
Peigne, Gay Ducati 

Kopeliovitch, Schmidt, sjb

σ(pA→ J/ψX) ∝ A2/3 at high xF

Behavior of αs in infrared

Puzzles such as large AN , J/ψ → ρπ, double
charmonium production

ep→ eπ+n

Pπ/p # 30%

Violation of Gottfried sum rule
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• Measure Light-Front Wavefunctions

• Test AdS/CFT predictions

• Novel Aspects of Hadron Wavefunctions: 
Intrinsic Charm, Hidden Color, Color 
Transparency/Opaqueness

• Diffractive Di-Jet, Tri-Jet Production

• Nuclear Shadowing and Antishadowing

• Novel QCD Mechanism for Higgs Production

Use Diffraction to Resolve 
Hadron Substructure
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conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

XB

p

x3,!k⊥3

M ∝ ∑3
ij

∂2

∂!k⊥i∂!k⊥j
ψp
3(xi,!k⊥i)

For Zα # 1

VLL = O(α)VC

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact Diffraction, Rapidity gap

A
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A

d

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

Rapidity gap between high 
transverse momentum clusters

Diffractive dissociation of color-octet 
deuteron to two high tranverse 

momentum clusters
Hidden Color Fock State
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 4: (Color online) Comparison with Drell-Yan data of

R = σpA
DY /σpA′

DY . The ratios (Rexp − Rtheo)/Rtheo are shown.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.

5

Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF ! 

 Dynamical effect due to virtual photon interacting in 
nucleus

Stodolsky
Pumplin, sjb

Gribov

Shadowing depends on understanding diffraction in DIS
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2ν/Q2 ≥ LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

→ Shadowing of the DIS nuclear structure
functions.

  Observed HERA DDIS produces nuclear shadowing
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate 
Pomeron

Need Imaginary Phase to Generate 
T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Shadowing depends on understanding 
diffraction in DIS
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Origin of Nuclear Shadowing  
and Regge Behavior of Deep 
Inelastic Structure Functions

Antiquark Interacts with Target Nucleus at Effective En-
ergy ŝ ∝ 1/xB j
σq̄N ∼ ŝαR−1→F2N(xb j)∼ x1−αR at small xb j
Shadowing of antiquark-nucleus cross section σq̄A ∼ Aα

produces same A depenence of nuclear structure function

in light-cone gauge 

dependence
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Phase of two-step amplitude relative to one
step:

1√
2
(1− i)× i = 1√

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ∗, Z0, W±

Reggeon 
Exchange
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Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior
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Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
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The one-step and two-step processes in DIS
on a nucleus.

If the scattering on nucleon N1 is via
C = − Reggeon or Odderon exchange,
the one-step and two-step amplitudes are
opposite in phase, enhancing
the q flux reaching N2

→ Antishadowing of the
DIS nuclear structure functions

   constructive in phase, enhancing

H. J. Lu, sjb
Schmidt, Yang, sjb
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Figure 9: The nuclear shadowing and antishadowing effects at 〈Q2〉 = 1 GeV2. The
experimental data are taken from Refs. [47, 48].

interactions.

3 Nuclear effects on extraction of sin
2 θW

The observables measured in neutrino DIS experiments are the ratios of neutral cur-

rent (NC) to charged current (CC) current events; these are related via Monte Carlo

simulations to sin2 θW . In order to examine the possible impact of nuclear shadowing

and antishadowing corrections on the extraction of sin2 θW , one is usually interested

in the following ratios

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ− + X)
, (38)

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ+ + X)
(39)

of NC to CC neutrino (anti-neutrino) cross sections for a nuclear target A. As is well

known, if nuclear effects are neglected for an isoscalar target, one can extract the
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Predicted nuclear shadowing and and antishadowing at 

< xF >= 0.33

Q2 = 1 GeV2

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)




