Space-time picture of DVCS

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

P. Hoyer

$$
x^{+}=\mathbf{x}_{\perp}=0
$$

The position of the struck quark differs by x^{-}in the two wave functions

Measure x^{-}distribution from DVCS:
Use Fourier transform of skewness,

$$
\zeta=\frac{Q^{2}}{2 p \cdot q}
$$ the longitudinal momentum transfer

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

FermiLab
AdS/CFT and Novel QCD Phenomena
77
Stan Brodsky SLAC
S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary $^{e, a, f}$

Hadron Optics

The Fourier Spectrum of the DVCS amplitude in σ space for different fixed values of

$$
\zeta=\frac{Q^{2}}{2 p \cdot q}
$$

DVCS Amplitude using holographic QCD meson LFWF

$$
\wedge_{Q C D}=0.32
$$

 $\left|b_{\perp}\right|$.

GeV units

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena

Stan Brodsky SLAC

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support o < x $<$ I.
- Quark Interchange dominant force at short distances

AdS/CFT explains why quark interchange is dominant
interaction at high momentum transfer in exclusive reactions
$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$

Non-linear Regge behavior:

$$
\alpha_{R}(t) \rightarrow-1
$$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
8I

Stan Brodsky SLAC

Why is quark-interchange dominant over gluon exchange?

Example: $M\left(K^{+} p \rightarrow K^{+} p\right) \propto \frac{1}{u t^{2}}$
Exchange of common u quark
$M_{Q I M}=\int d^{2} k_{\perp} d x \psi_{C}^{\dagger} \psi_{D}^{\dagger} \Delta \psi_{A} \psi_{B}$
Holographic model (Classical level):

Hadrons enter 5th dimension of $A d S_{5}$
Quarks travel freely within cavity as long as
separation $z<z_{0}=\frac{1}{\Lambda_{Q C D}}$
LFWFs obey conformal symmetry producing quark counting rules.

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{(a)}$ G. C. Blazey, ${ }^{(b)}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak,
E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{(d)}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and
S. Gushue ${ }^{(\mathrm{e})}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / c$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

Ferm
March 30, $\underset{\operatorname{soo}}{p^{ \pm} p \rightarrow p} p^{ \pm}$.

Deep Inelastic Electron-Proton Scattering

FermiLab
AdS/CFT and Novel QCD Phenomena

Deep Inelastic Electron-Proton Scattering

Conventional wisdom:
Final-state interactions of struck quark can be neglected

FermiLab
March 30, 2007
AdS/CFT and Novel QCD Phenomena 85

Stan Brodsky SLAC

Physics of Rescattering

- Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena

Final-State Interactions Produce Pseudo T-Odd (Sívers Effect)

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark! $\mathbf{i} \vec{S} \cdot \vec{p}{ }_{j e t} \times \vec{q}$
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; Wilson line effect; gauge independent
- Unexpected QCD Effect -- thought to be zero!
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD Coulomb phase at soft scale
- Measure in jet trigger or leading hadron

- Sum of Sivers Functions for all quarks and gluons vanishes. (Zero gravito-anomalous magnetic moment: $\mathrm{B}(\mathrm{o})=0$)

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena

Stan Brodsky
SLAC

Predict Opposite Sign SSA in DY!

Single Spin Asymmetry In the Drell Yan Process
$\vec{S}_{p} \cdot \overrightarrow{\bar{p}} \times \vec{q}_{\gamma^{*}}$
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver's Effect]Proportional to the Proton Anomalous Moment and α_{s}.

Opposite Sign to DIS! No Factorization

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 90

Stan Brodsky SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI

FermiLab
March 30, 2007

Anomalous effect from Double ISI in Massive Lepton Production

Boer, Hwang, sjb
$\cos 2 \phi$ correlation

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!

- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

Double Initial-State Interactions generate anomalous $\cos 2 \phi$ Boer, Hwang, sjb Drell-Yan planar correlations

$$
\begin{array}{r}
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right) \\
\text { PQCD Factorization (Lam Tung): } 1-\lambda-2 \nu=0
\end{array}
$$

$\frac{\nu}{2} \propto h_{1}^{\perp}(\pi) h_{1}^{\perp}(N)$

Violates Lam-Tung relation!

FermiLab	AdS/CFT and Novel QCD Phenomena
March 30, 2007	93

Model: Boer,
Stan Brodsky SLAC

Dangling Gluons

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY $\cos 2 \phi$ correlation at leading twist from double ISI-- not given by standard PQCD factorization
- Wilson Line Effects not I in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments

Bodwin, Lepage, sjb
Hoyer, Marchal, Peigne, Sannino, sjb

de Roeck

Diffractive Structure Function $F_{2}{ }^{D}$

Diffractive inclusive cross section

$$
\begin{aligned}
\frac{\mathrm{d}^{3} \sigma_{N C}^{d i f f}}{\mathrm{~d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{~d} Q^{2}} & \propto \frac{2 \pi \alpha^{2}}{x Q^{4}} F_{2}^{D(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right) \\
F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right) & =f\left(x_{\mathbb{P}}\right) \cdot F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)
\end{aligned}
$$

extract DPDF and $x g(x)$ from scaling violation
Large kinematic domain $3<Q^{2}<1600 \mathrm{GeV}^{2}$
Precise measurements sys 5%, stat $5-20 \%$

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
96

Stan Brodsky SLAC

Same result obtained in Lab or Parton $q^{+=o}$ Frame

$+$

Sum Eikonal Interactions
Similar to Color-Dipole Model

Final-state interactions included

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
97

Stan Brodsky SLAC

- Rescattering gluons have small momenta
$\Rightarrow \beta$ dependence of diffractive PDFs arises from underlying (nonperturbative) $g \rightarrow \mathrm{q} \overline{\mathrm{q}}$ and $g \rightarrow g g$

- Effective \mathbb{P} distribution and quark structure function:

$$
\begin{aligned}
f_{\mathbb{P} / p}\left(x_{\mathbb{P}}\right) & \propto g\left(x_{\mathbb{P}}, Q_{0}^{2}\right) \\
f_{q / \mathbb{P}}\left(\beta, Q_{0}^{2}\right) & \propto \beta^{2}+(1-\beta)^{2}
\end{aligned}
$$

- Diffractive amplitudes from rescattering are dominantly imaginary - as expected for diffraction (Ingelman-Schlein \mathbb{P} model has real amplitudes)
S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne
and F. Sannino, Phys. Rev. D 65, 114025 (2002)
[arXiv:hep-ph/0104291].
S. J. Brodsky, R. Enberg, P. Hoyer and G. Ingel-
man, arXiv:hep-ph/0409119.

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena

Stan Brodsky
SLAC

Consequences for DDIS

- Underlying hard scattering sub-process is the same in diffractive and non-diffractive events
- Same Q^{2} dependence of diffractive and inclusive PDFs (remember: hard radiation not resolved)
- and same energy (W or x_{B}) dependence
$\Rightarrow \frac{\sigma_{\text {diff }}}{\sigma_{\text {tot }}}$ independent of x_{B} and Q^{2} (as in data)
Also describes: vector meson leptoproduction BGMFS
- Note:
- In pomeron models the ratio depends on $x_{B}^{1-\alpha_{\mathbb{P}}}$ which is ruled out
- In a two-gluon model with two hard gluons, the diffractive cross section depends on $\left[f_{g / p}\left(x_{B}, Q^{2}\right)\right]^{2}$

FermiLab March 30, 2007

Hadronization at the Amplitude Level

$e^{+} e^{-} \rightarrow H^{+} H^{-}+X$
Large $\Delta y=\left|y_{H}-y_{X}\right|$

Bjorken, Lu, sjb
Kopeliovich, Schmidt, sjb

Timelike Pomeron
C=+ Gluonium Trajectory Large Rapidity Gap Events

Crossing analog of Diffractive DIS $\quad e H \rightarrow e H+X$

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena 100

Stan Brodsky SLAC

Hadronization at the Amplitude Level
$e^{+} e^{-} \rightarrow H^{+} H^{-}+X$
Large $\Delta y=\left|y_{H}-y_{X}\right|$

Timelike Odderon
Large Rapidity Gap Events \quad C=- Gluonium Trajectory
$H^{+} H^{-}$asymmetry from Odderon-Pomeron interference

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena IOI

Stan Brodsky SLAC

Predict: Reduced DDIS/DIS for Heavy Quarks

Kopeliovitch, Schmidt, sjb
Reproduces lab-frame color dipole approach

FermiLab
March 30, 2007
AdS/CFT and Novel QCD Phenomena
102

Stan Brodsky SLAC

QCD Mechanism for Rapidity Gaps

Measure in $e \gamma \rightarrow e X+\rho$
FermiLab
AdS/CFT and Novel QCD Phenomena
Stan Brodsky SLAC

Diffractive Hadron-Hadron HardCollisions

- Single diffractive + high P_{T}
- Double diffractive + high P_{T}

Bartels, Goulianis, Mueller, BFKL, Kovchegov, Maor, Khoze, Peigne, Gay Ducati Kopeliovitch, Schmidt, sjb

- Heavy quarks diffractive
- Lepton pair diffractive (Berman, Levy, Yan 1969)
- Nuclear dependence $\sigma(p A \rightarrow J / \psi X) \propto A^{2 / 3}$ at high x_{F}

FermiLab
March 30, 2007

Stan Brodsky SLAC

Use Dúffraction to Resolve Hadron Substructure

- Measure Light-Front Wavefunctions
- Test AdS/CFT predictions
- Novel Aspects of Hadron Wavefunctions: Intrinsic Charm, Hidden Color, Color Transparency/Opaqueness
- Diffractive Di-Jet, Tri-Jet Production
- Nuclear Shadowing and Antishadowing
- Novel QCD Mechanism for Higgs Production

Diffractive dissociation of color-octet deuteron to two high tranverse momentum clusters

Stodolsky
 Pumplin, sjb
 Gribov

Nuclear Shadowing in QCD

$+$

$+\ldots$

Shadowing depends on understanding diffraction in DIS
Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena
108

Stan Brodsky SLAC

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
109

Stan Brodsky SLAC

Shadowing depends on understanding diffraction in DIS

Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate
T-Odd Single-Spin Asymmetry
Physics of FSI not in Wavefunction of Target

FermiLab
March 30, 2007

AdS/CFT and Novel QCD Phenomena 110

Stan Brodsky SLAC

Origin of Nuclear Shadowing and Regge Behavior of Deep Inelastic Structure Functions

in light-cone gauge

Antiquark Interacts with Target Nucleus at Effective En$\operatorname{ergy} \hat{s} \propto 1 / x_{B j}$
$\sigma_{\bar{q} N} \sim \tilde{s}^{\alpha_{R}-1} \rightarrow \mathrm{~F}_{2 N}\left(x_{b j}\right) \sim x^{1-\alpha_{R}}$ at small $x_{b j}$
Shadowing of antiquark-nucleus cross section $\sigma_{\bar{q} A} \sim A^{\alpha}$ produces same A dependence of nuclear structure function

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
III

Stan Brodsky SLAC

Reggeon

Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal
Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Non-singlet $10^{-2} \quad 10^{-1}$ Reggeon
 Kuti-Weisskopf behavior

 ExchangeFermiLab March 30, 2007

Stan Brodsky SLAC

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang,
"Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,"
Phys. Rev. D 70, 116003 (2004)

FermiLab
AdS/CFT and Novel QCD Phenomena
114

Stan Brodsky SLAC

The one-step and two-step processes in DIS on a nucleus.

If the scattering on nucleon N_{1} is via $C=-$ Reggeon or Odderon exchange, the one-step and two-step amplitudes are constructive in phase, enhancing the \bar{q} flux reaching N_{2}
\rightarrow Antishadowing of the
DIS nuclear structure functions

> H. J. Lu, sjb
> Schmidt, Yang, sjb

FermiLab March 30, 2007

AdS/CFT and Novel QCD Phenomena
115

Stan Brodsky

 SLAC

Predicted nuclear shadowing and and antishadowing at $Q^{2}=1 \mathrm{GeV}^{2}$

		S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].
FermiLab	AdS/CFT and Novel QCD Phenomena	Stan Brodsky
March 30, 2007	116	SLAC

