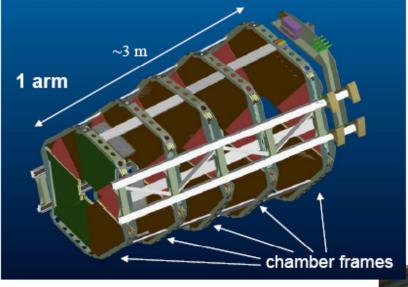
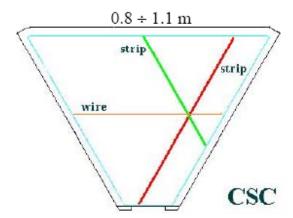


TOTEM: total cross section, elastic scattering, diffraction

Fabrizio Ferro – INFN Genova



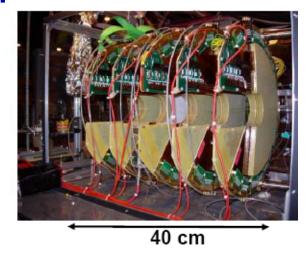
Experimental layout

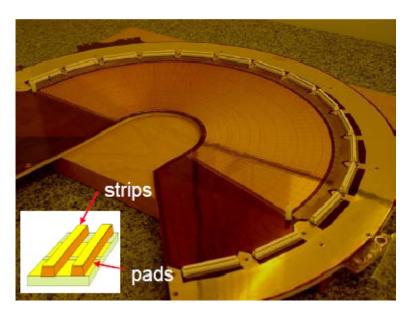


T1 telescope

- Cathode Strip Chambers (CSC)
- 3.1 < |η| < 4.7
- 5 planes with measurement of three coordinates per plane.
- 3 degrees rotation and overlap between adjacent planes
- Primary vertex reconstruction (beam-gas interaction removal)
- Trigger with anode wires
- Connected to new VFAT chips

T1 support installation

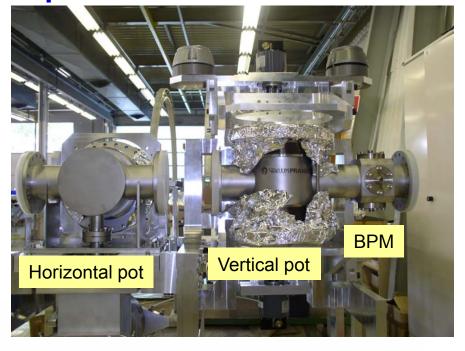


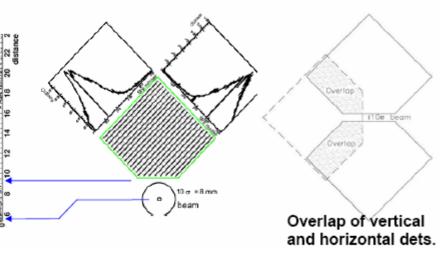


T2 telescope

- Gas Electron Multiplier (GEM)
- 5.3 < |η| < 6.5
- 10 half-planes @ 13.5 m from IP5
- Half-plane:
 - 512 strips (width 80 μm, pitch of 400 μm)
 - 65*24=1560 pads (2x2 mm² -> 7x7 mm²)
- Primary vertex reconstruction (beam-gas interaction removal)
- Trigger using (super) pads
- Detectors tested in a testbeam with new VFAT chips
- First beam profiles, cluster distributions and detector characteristics

Roman pots

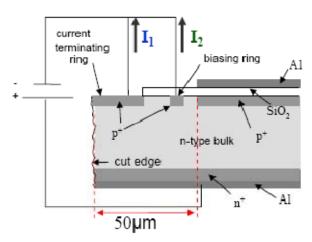



10 planes of edgeless detectors

 Leading proton detection at distances down to 10×σ(beam) + d

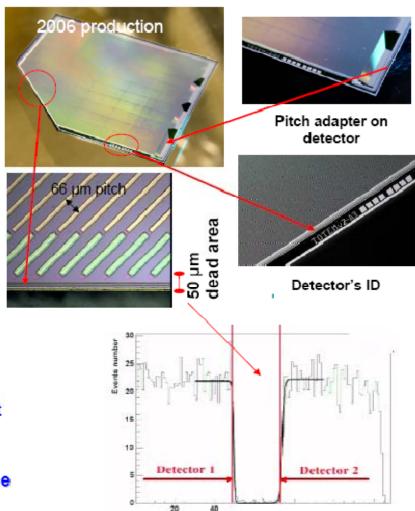
 Need "edgeless" detectors that are efficient up to the physical edge to minimize "d"

o(beam) ≈ 0.1–0.5 mm (optics dep.)



reconstructed tracks #

Edgeless detectors


Planar technology with CTS (Current Terminating Structure)

- AC coupled microstrips made in planar technology with novel guardring design and biasing scheme
- In production, all expected by June 2007
- First measurement of leakage current at CERN:

60 nA at 200 V (excellent)

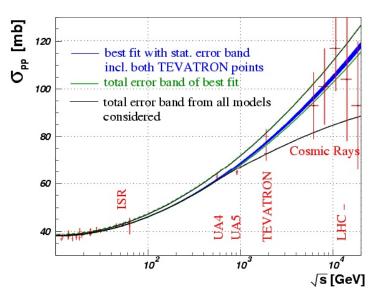
Strong improvements on the cut at the sensitive edge

Physics program

- Total cross section with a precision of 1%
- Elastic pp scattering in a wide t-range 10⁻³ < |t| < 10 GeV²
- Soft single and central diffraction
- Low-x dynamics
- Charged particle multiplicity and energy flow in the forward direction
- Semi-hard and hard single and central diffraction: production of jets, W, heavy flavours, etc.
- Exclusive particle production in central diffraction
- $\gamma \gamma$ and γ p physics

For the LHC start

Total cross section with a precision <5% Multiplicity distributions
Diffraction at low/medium luminosity: SD and DPE



Running scenarios

Physics:	low t elastic, σ _{tot} , min bias	large t elastic	Soft diffraction	Soft & semi-hard diffraction
β*[m]	1540 (90)	18, 2, 0.5	1540	90
N of bunches	43	2808	156	156
N of part. per bunch (x 10 ¹¹)	0.3	1.15	(0.6 - 1.15)	1.15
Half crossing angle [μrad]	0	160	0	0
Transv. norm. emitt. [μm rad]	1 (3.75)	3.75	1 - 3.75	3.75
RMS beam size at IP [μm]	454 (200)	95	454 - 880	200
RMS beam diverg. [μrad]	0.29 (2.3)	5.28	0.29 - 0.57	2.3
Peak luminosity [cm ⁻² s ⁻¹]	1.6 (7.3) x 10 ²⁸	3.6 x 10 ³²	2.4 x 10 ²⁹	2 x 10 ³⁰

Total cross section

Disagreement E811–CDF: 2.6 σ

Best combined fit by COMPETE:

$$\sigma_{tot} = 111.5 \pm 1.2 ^{+4.1}_{-2.1} \text{ mb}$$

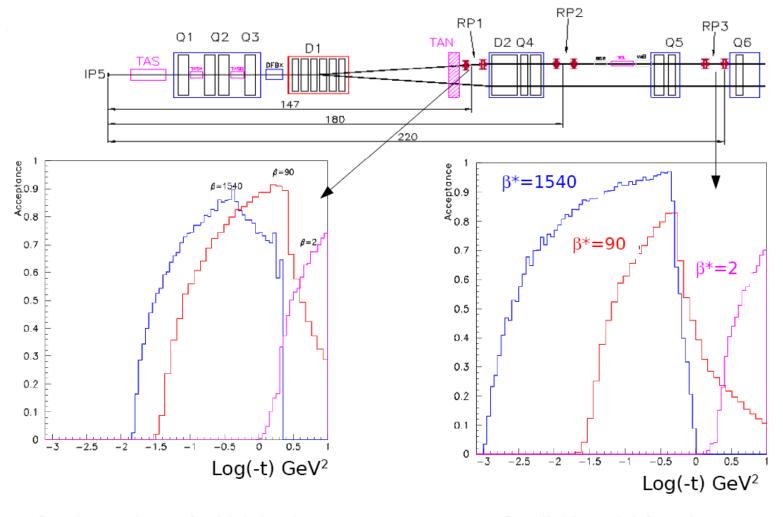
But models vary within (at least) $^{+10}_{-20}$ %.

Luminosity independent measurement using the **Optical theorem**.

- Inelastic rate
- Elastic rate
- Extrapolation to the optical point

Depend on optics

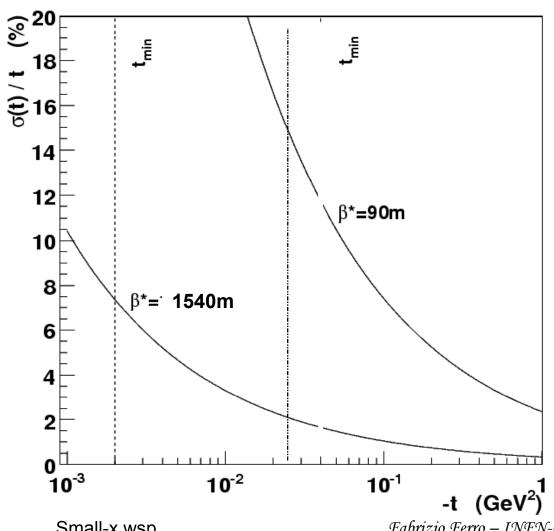
• ρ - COMPETE extrapolation $\rho = 0.1361 \pm 0.0015 \, {}^{+0.0058}_{-0.0025}$

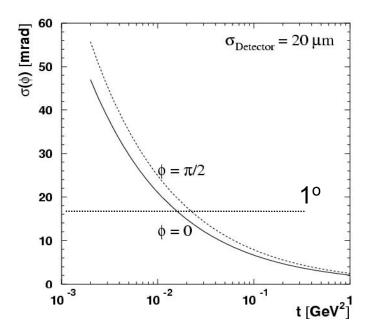

Necessary optics with acceptance at low |t|:

 β *=1540m (difficult to have at the beginning)

 \rightarrow proposal: β *=90m (easier: un-squeezing of existing injection optics)

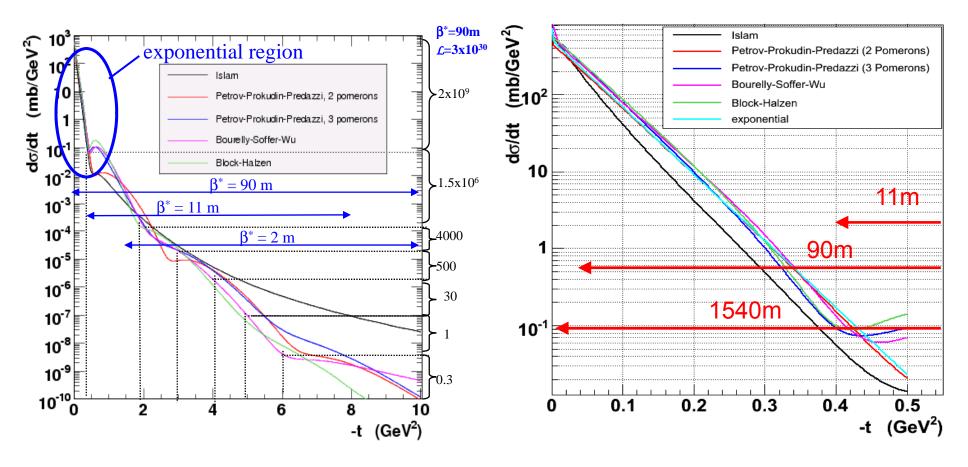
Elastic scattering: acceptance




Good acceptance for high-t values

Parallel-to-point focusing

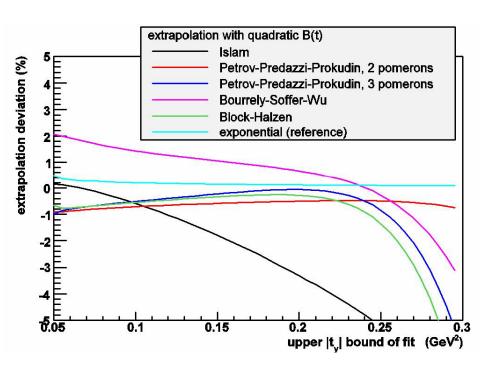
Elastic scattering: resolution



of particles in the 2 arms → background reduction

Elastic scattering: event rate

Events (BSW model) at 220m in 1 nominal day (10⁵) s



Proposal for early runs: Optics with $\beta^* = 90$ m

- |t|-acceptance down to 0.03 GeV², covering well the exponential region of dσ/dt;
- beam rather thick (σ_v = 0.6 mm): $\delta t/t \propto \delta y/\sigma_v \Rightarrow$ RP position systematics less critical
- Typical luminosity L $\sim 10^{29} 10^{30}$ cm⁻² s⁻¹

Systematic error of extrapolation of the elastic cross-section to t = 0:

Fitting function:
$$\frac{d \sigma}{dt} = A e^{B(t)t}$$

with $B(t) = a + bt + ct^2$

Uncertainty < 5 % (most cases < 2 %)

(not as good as with β^* = 1540 m, but optics easier to commission \rightarrow ideal for an early run)

Total event rates

Elastic Trigger

RP

T1&T2 + RP provide fully inclusive trigger:

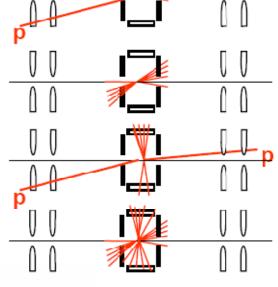
reconstruct primary vertex to discriminate against beam-gas interactions

TOTEM Trigger efficiency:

SD: 82 %, NSD > 99 %! Single Diffractive

Trigger:

Double Diffractive

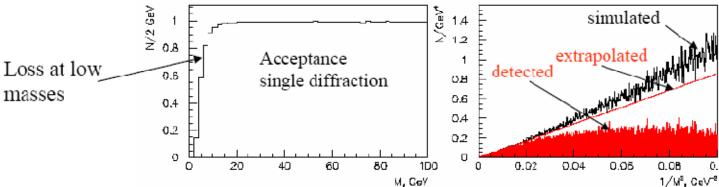

Trigger:

Central Diffractive

Trigger:

Minimum Bias

Trigger



CMS

RP

T1/T2

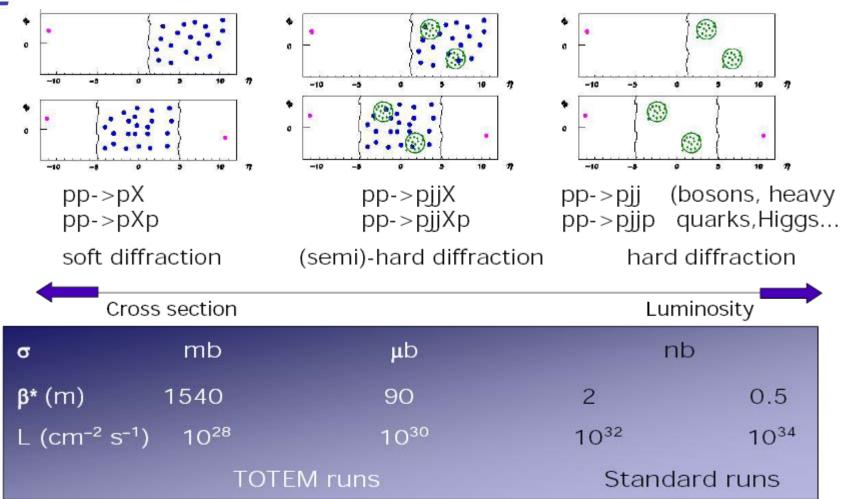
Extrapolation of SD cross-section to large $1/M^2$ using $d\sigma/dM^2 \sim 1/M^2$.

Fermilab 30/3/2007

Error on σ_{tot}

Trigger losses for TOTEM minimum bias trigger

	σ [mb]	T1/T2 double arm trigger loss [mb]	T1/T2 single arm trigger loss [mb]	Systematic error after extrapolation [mb]
Minimum bias	58	0.3	0.06	0.06
Single diffractive	14	_	3	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	0.2		0.02
Elastic Scattering	30	_	_	0.2 (0.6)
Error on extrapolation to t=0:			$eta^* = 1$	$540 \text{ m} \qquad \beta^* = 90 \text{ m}$

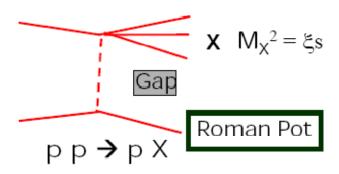

Error on extrapolation to t=0:

~0.5% @
$$\beta$$
* = 1540 m

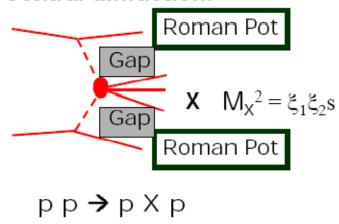
$$3 - 5\%$$
 @ $\beta^* = 90$ m

TOTEM

Diffraction: running scenario



Physics that can be studied depends on luminosity and optics (acceptance)



Diffraction at low luminosity: soft diffraction

Single diffraction:

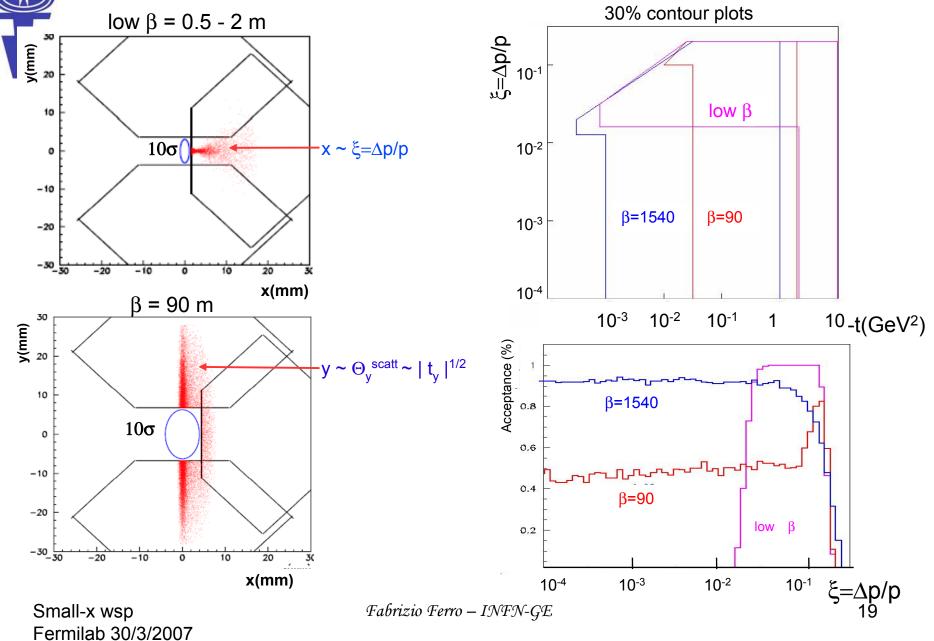
Central diffraction:

Inclusive cross sections & their t, M_x dependence

Event topology

Measure ξ and central mass via:

- proton(s)
- rapidity gap relation $\Delta \eta = -\ln \xi$ with CMS
- calorimeters

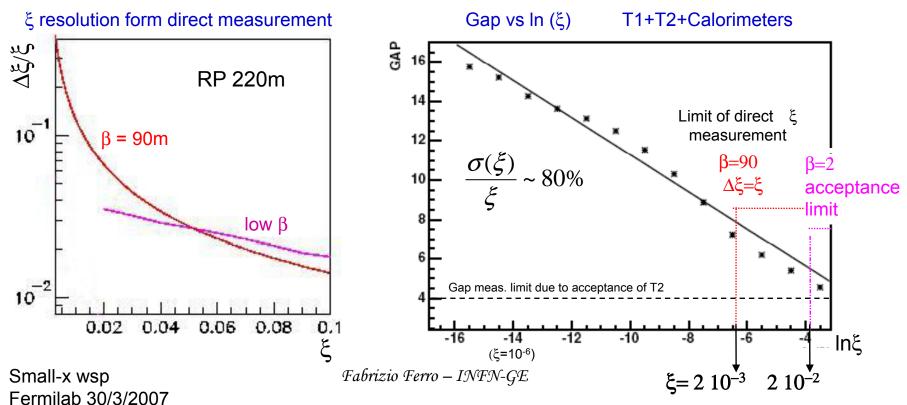

$$\xi^{\pm} = \Sigma_{i} E_{T}^{i} e^{\pm \eta_{i}} / \sqrt{s}$$

Wide t & ع acceptance range with TOTEM optics

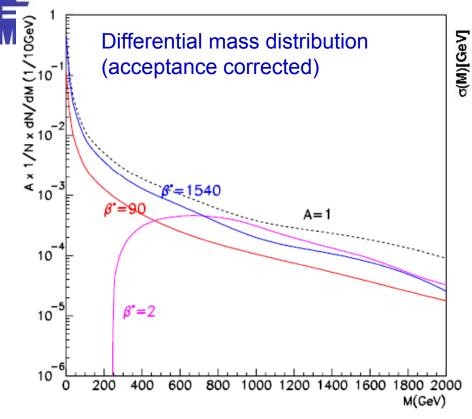
Soft diffraction important contribution to pile-up at high luminosity

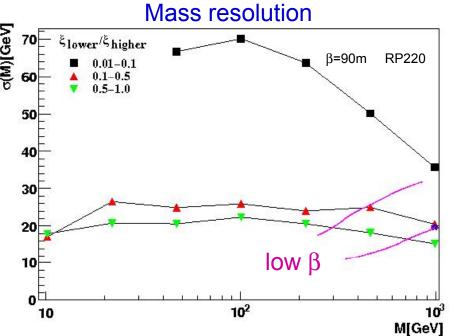
TOTEM

Measurement of forward protons


Double Pomeron Exchange (DPE) at low/medium luminosity

- Study of mass distributions via the 2 protons
 - trigger with 2p+T1/T2: rate ~200Hz @ β*=90m, L=10 30 cm- 2 s- 1 (TOTEM limit ~2kHz)
- ξ measured directly (TOTEM) or
 - With rapidity gap Δη=-In ξ


TOTEM


- With calorimeters $\xi = \sum_{i} E_{T}^{i} e^{\mp \eta_{i}} / \sqrt{s}$

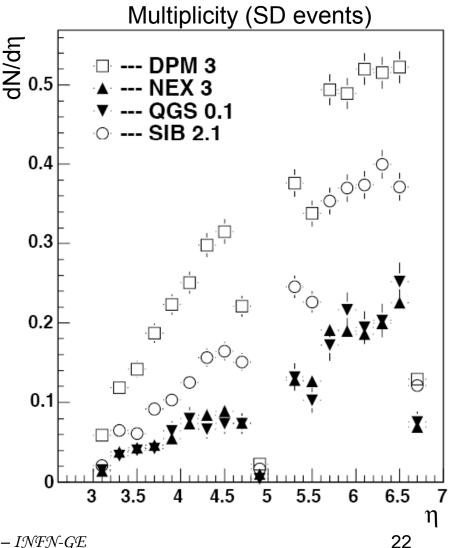
(TOTEM+CMS)

Differential mass distribution in DPE

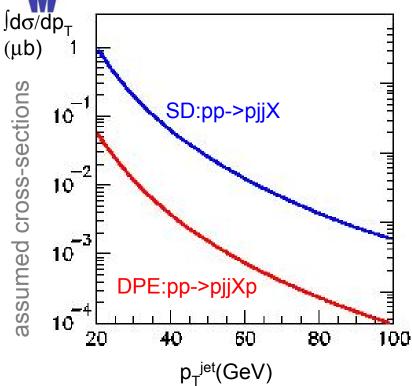
Best resolution for symmetric events

Events in 10⁵ s:

$$\beta^*$$
=90m (L=10³⁰) \rightarrow ~2·10⁷ events in 1


$$\beta^*\text{=}2\text{m} \; (\text{L=}10^{32}) \; \rightarrow \; \text{\sim}10^8 \; \text{ events in 300$$

TOTEM


Forward multiplicity: connection with cosmic rays physics

- Models used in hadronic simulation programs differ by more than a factor 2.
- Necessary measurement of forward particle and energy flow.
- SD events trigger: p+T1/T2 (opposite side)
- Study in details SD events

Diffraction at low luminosity (with CMS): semi-hard diffraction (SD and DPE)

In case of jet activity ξ can also be determined from calorimeter info:

$$\xi^{\pm} = \Sigma_i E_T^i e^{\pm \eta}_i / \sqrt{s}$$
 $\sigma(\xi)/\xi \sim 40 \%$

Measure the cross sections and their t, M_X , p_T^{jet} dependence

Event topology: exclusive vs inclusive jet production

N event collected [acceptance included]

$$\beta$$
*=90m \int Ldt = 0.3 (pb⁻¹)

SD:
$$p_T > 20 \text{ GeV}$$
 $6x10^4$ DPE: " 2000

$$\beta$$
*=2m \int Ldt = 100 (pb⁻¹)

SD:
$$p_T > 50 \text{ GeV}$$
 $5x10^5$ DPE: " $3x10^4$

Summary

- To measure Total Cross Section with 1% precision TOTEM needs β*=1540m optics
- During first running (2008) an intermediate $\beta^*=90m$ optics could be achieved un-squeezing the existing injection optics. In a few days TOTEM could measure σ_{tot} with (better than) 5% precision
- TOTEM and CMS can measure together at low and medium luminosity:
 - Inclusive diffractive processes from low masses up to a few TeV
 - Diffractive event topologies using rapidity gaps & calorimetry and correlated with leading proton measurements
 - Forward particle multiplicity as input for cosmic ray modelling
 - Inclusive diffractive p_T^{jet} cross section from ~20 GeV onwards by combining measurements from runs at different β^* 's