

The journey to 50

Anke Ackermann Kirchhoff Institute for Physics Heidelberg University

Annweiler am Trifels, July 2024

How to make an observation

Pick an appropriate final state

Apply an event selection to maximise your S/B

Anke Ackermann

Estimate the irreducible backgrounds

Check if you are above 5σ

Pick an appropriate final state

Anke Ackermann

Annweiler am Trifels, $ZZ\gamma$

Pick an appropriate final state, but ...

Anke Ackermann

Annweiler am Trifels, ZZ γ

Pick an appropriate final state, but

An appropriate final state

 \boldsymbol{q}

 \overline{q}

Anke Ackermann

An appropriate final state

Anke Ackermann

120

m_Z [GeV]

Final state particles 🖌

+

ti 10 −

How to make an observation

Pick an appropriate final state

Apply an event selection to maximise your S/B

Anke Ackermann

Estimate the irreducible backgrounds

Check if you are above 5σ

Apply a good event selection

Select the final state particles

Anke Ackermann

Use properties of the production channel

9

Remove as much background as possible

3

Select the final state particles

- 2 pairs of 2 opposite-sign same-flavour (OSSF) leptons \rightarrow 4e, 4µ, 2e2µ
- 1 photon, p_T > 20 GeV
- invariant mass $m_{\ell\ell} > 40 \text{ GeV}$
- $min(|m_{\ell,1} m_Z| + |m_{\ell,2} m_Z|)$
- FSR rejection

Anke Ackermann

Use properties of the Z boson

- 2 pairs of 2 opposite-sign same-flavour (OSSF) leptons \rightarrow 4e, 4µ, 2e2µ
- 1 photon, p_T > 20 GeV
- invariant mass $m_{\ell\ell} > 40 \text{ GeV}$
- $min(|m_{\ell,1} m_Z| + |m_{\ell,2} m_Z|)$
- FSR rejection

Anke Ackermann

Remove background

- 2 pairs of 2 opposite-sign same-flavour (OSSF) leptons \rightarrow 4e, 4µ, 2e2µ
- 1 photon, p_T > 20 GeV
- invariant mass $m_{\ell\ell} > 40 \text{ GeV}$
- $min(|m_{\ell\ell,1} m_Z| + |m_{\ell\ell,2} m_Z|)$
- FSR rejection

Anke Ackermann

Annweiler am Trifels, $ZZ\gamma$

Remove background

Anke Ackermann

How to make an observation

Pick an appropriate final state

Apply an event selection to maximise your S/B

Anke Ackermann

Estimate the irreducible backgrounds

Check if you are above 5σ

Estimate the irreducible background

Determine potential backgrounds

Estimate the potential backgrounds

2.

Anke Ackermann

Annweiler am Trifels, ZZ $\!\gamma$

Anke Ackermann

Anke Ackermann

Anke Ackermann

Anke Ackermann

Anke Ackermann

Annweiler am Trifels, $ZZ\gamma$

Anke Ackermann

Annweiler am Trifels, $ZZ\gamma$

Overview - misidentified leptons:

- non-prompt leptons mainly from jets
- main backgrounds: $WZ\gamma$, $t\bar{t}\gamma$
- method: matrix method + fake factor
 - real efficiencies from MC
 - fake efficiencies from data (Z CR) •

Anke Ackermann

Anke Ackermann

properties $\begin{pmatrix} N^t \\ N^l \end{pmatrix} = \begin{pmatrix} r & f \\ 1-r & 1-f \end{pmatrix} \begin{pmatrix} N_r \\ N_f \end{pmatrix}$ real leptons fake leptons Fake efficiencies of the electrons 2.5 μ 1.5 0.5 180 200 p_{_} [GeV] 20 40 60 80 100 160 120 140

Anke Ackermann

 $\underbrace{\stackrel{N^{tt}}{N^{tl}}}_{N^{lt}} \underbrace{\stackrel{N^{tt}}{N^{lt}}}_{N^{lt}} = \begin{pmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 \bar{r}_2 & r_1 \bar{f}_2 & f_1 \bar{r}_2 & f_1 \bar{f}_2 \\ \bar{r}_1 r_2 & \bar{r}_1 f_2 & \bar{f}_1 r_2 & \bar{f}_1 f_2 \\ \bar{r}_1 \bar{r}_2 & \bar{r}_1 \bar{f}_2 & \bar{f}_1 \bar{r}_2 & \bar{f}_1 \bar{f}_2 \end{pmatrix} \begin{pmatrix} N^{rr} \\ N^{rf} \\ N^{fr} \\ N^{ff} \end{pmatrix}$

 $N_{\rm SR}^{\rm fake \ lepton} = r_1 f_2 N^{rf} + f_1 r_2 N^{fr} + f_1 f_2 N^{ff}$

$$N_{\rm SR}^{\rm fake \ lepton} = \sum_{i,j} \frac{r_i f_i}{r_i - f_i} \frac{r_j (1 - f_j)}{r_j - f_j} N_{\rm CR1, i, j} - \sum_{i,j} \frac{r_i f_i}{r_i - f_i} \frac{r_j f_j}{r_j - f_j} N_{\rm CR2, i, j}$$

$$N_{\rm CR1, i, j}^{\rm data} - N_{\rm CR1, i, j}^{ZZ\gamma}$$

Anke Ackermann

$$\begin{array}{cccc} f_{2} & f_{1}r_{2} & f_{1}f_{2} \\ \bar{f}_{2} & f_{1}\bar{r}_{2} & f_{1}\bar{f}_{2} \\ f_{2} & \bar{f}_{1}r_{2} & \bar{f}_{1}f_{2} \\ \bar{f}_{2} & \bar{f}_{1}\bar{r}_{2} & \bar{f}_{1}f_{2} \\ \bar{f}_{2} & \bar{f}_{1}\bar{r}_{2} & \bar{f}_{1}\bar{f}_{2} \end{array} \right) \left(\begin{array}{c} N^{rr} \\ N^{rf} \\ N^{fr} \\ N^{ff} \end{array} \right)$$

- CR1: SR with 1 lepton loose & !tight
 - data: 1 ± 1
 - 4ℓ+γ signal sample: 0.436 ± 0.024
- CR2: SR with 2 lepton loose & !tight
 - data: 1 ± 1
 - 4ℓ+γ signal sample: 0.0121 ± 0.00

Anke Ackermann

electrons	matrix method
p_T η p_T, η	-0.012 ± 0.002 -0.009 ± 0.001 -0.012 ± 0.002
muons	
$p_T \ \eta \ p_T, \eta$	$\begin{array}{c} 0.17 \pm 0.18 \\ 0.05 \pm 0.07 \\ 0.15 \pm 0.16 \end{array}$

Annweiler am Trifels, ZZ γ

- CR1: SR with 1 lepton loose & !tight
 - data: 1 ± 1
 - 4ℓ+γ signal sample: 0.436 ± 0.024
- CR2: SR with 2 lepton loose & !tight
 - data: 1 ± 1
 - 4ℓ+γ signal sample: 0.0121 ± 0.00

Anke Ackermann

Annweiler am Trifels, ZZ $\!\gamma$

- CR1: SR with 1 lepton loose & !tight
 - data: 1 ± 1
 - $4\ell + \gamma$ signal sample: 0.436 ± 0.024
- CR1': SR with 1 lepton loose & !tight, no photon
 - data: 553 ± 24
 - 4ℓ MC sample: 233.6 ± 2.0

Anke Ackermann

28

$$\frac{N_{ZZ\gamma}^{CR_1}}{N_{ZZ\gamma}} = \frac{0.436 \pm 0.004}{5.83 \pm 0.08} = 0.0748 \pm 0.0042$$

$$\frac{N_{ZZ}^{CR'_1}}{N_{ZZ}} = \frac{233.6 \pm 2.0}{3112.6 \pm 7.2} = 0.0750 \pm 0.0007$$

fake N_{ZZ} $N_{ZZ\gamma}$

<u>Misidentified leptons in ZZ:</u> fake estimate electrons $27.2 \pm 6.2 \pm 2.5$ p_T $18.0 \pm 4.5 \pm 1.5$ η $26.5 \pm 6.6 \pm 2.6$ p_T, η muons $6.9 \pm 1.3 \pm 1.1$ p_T $6.6 \pm 1.1 \pm 1.2$ η $6.8 \pm 1.5 \pm 1.3$ p_T, η

Annweiler am Trifels, ΖΖγ

29

Systematic uncertainties

- stat. uncertainty from efficiencies propagated
- syst. uncertainty through binning (one bin η , 3 bins p_T)
- variations of prompt MC background ±10%
- difference to fake factor method

 $N_{ZZ\gamma}^{\ell} \text{fake} = \frac{N_{ZZ}^{\ell} \text{fake}}{N_{ZZ}} N_{ZZ\gamma}$

Anke Ackermann

<u>Misidentified leptons in ZZy:</u>

electrons	fake estimate
p_T η p_T, η	$\begin{array}{c} 0.051 \pm 0.013 \\ 0.034 \pm 0.009 \\ 0.050 \pm 0.013 \end{array}$
muons	
p_T	0.013 ± 0.003 0.012 ± 0.003
p_T, η	0.012 ± 0.003 0.013 ± 0.004

Anke Ackermann

Anke Ackermann

How to make an observation

Pick an appropriate final state

Apply an event selection to maximise your S/B

Anke Ackermann

Estimate the irreducible backgrounds

Check if you are above 5σ

Derive the signal significance

Combine all backgrounds

Anke Ackermann

2. Get the right formula

Overview - expected events

Sherpa 2.2.11 $\ell\ell\ell\ell\gamma$ PowegPythia8 $ZH(\rightarrow Z\gamma)$ Signal

Non-prompt Photons Misidentified Leptons Pile up $Z \rightarrow \tau \tau$ contribution **Total Background**

 $N_{\rm tot}$

Num	ber	of	Events

- $5.83 \pm 0.21 \\ 0.74 \pm 0.03 \\ 0.77 \pm 0.01$
 - 6.57 ± 0.21
 - $\begin{array}{l} 0.49 \ \pm 0.09 \ 0.062 \pm 0.014 \ 0.056 \pm 0.014 \ 0.035 \pm 0.006 \ 0.64 \ \pm 0.09 \end{array}$

 7.21 ± 0.23

Overview - expected events

Sherpa 2.2.11 $\ell\ell\ell\ell\gamma$ PowegPythia8 $ZH(\rightarrow Z\gamma)$ Signal

Non-prompt Photons Misidentified Leptons Pile up $Z \rightarrow \tau \tau$ contribution **Total Background**

 $N_{\rm tot}$

What formula?

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$

$$Z = \frac{s}{\sqrt{s+b}}$$

 $\bigvee D$

Anke Ackermann

$$Z = \frac{s}{b}$$

Z: significance *n*: number of events s: number of signal events b: number of background events σ : total background uncertainty

$$Z = \frac{S}{\sqrt{b + \sigma^2}}$$

$$Z = \sqrt{2\left(n\ln\left[\frac{n}{b}\right] - (n-b)\right)}$$

What formula?

Poisson-Poisson model with asymptotic formulae

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$

Gaussian approximation w/ uncertainty

V U

Gaussian approximation w/o uncertainty

Z =

Anke Ackermann

$$Z=rac{s}{b}$$

Signal to noise/
background ratic

Z: significance *n*: number of events s: number of signal events b: number of background events σ : total background uncertainty

$$\sqrt{b+\sigma^2}$$

Poisson-Poisson model with asymptotic formulae w/o uncertainty

$$Z = \sqrt{2\left(n\ln\left[\frac{n}{b}\right] - (n-b)\right)}$$

[ATL-COM-GEN-2018-026]

Annweiler am Trifels, $ZZ\gamma$

What formula?

Poisson-Poisson model with asymptotic formulae

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$

Gaussian approximation w/ uncertainty

V U

Gaussian approximation w/o uncertainty

Anke Ackermann

$$Z = -\frac{s}{b}$$

Signal to noise/
background ratio

Z: significance *n*: number of events s: number of signal events b: number of background events σ : total background uncertainty

$$Z = \frac{1}{\sqrt{b + \sigma^2}}$$

Poisson-Poisson model with asymptotic formulae w/o uncertainty

$$Z = \sqrt{2\left(n\ln\left[\frac{n}{b}\right] - (n-b)\right)}$$

[ATL-COM-GEN-2018-026]

Annweiler am Trifels, $ZZ\gamma$

Above 5o?

	Number of Events
Sherpa 2.2.11 $\ell\ell\ell\ell\gamma$ PowegPythia8 $ZH(\rightarrow Z\gamma)$ Signal	$\begin{array}{rrrr} 5.83 & \pm \ 0.21 \\ 0.74 & \pm \ 0.03 \\ 6.57 & \pm \ 0.21 \end{array}$
Non-prompt Photons	$0.49 \ \pm 0.09$
Misidentified Leptons	0.062 ± 0.014
Pile up	0.056 ± 0.014
$Z \to \tau \tau$ contribution	$\underline{0.035 \pm 0.006}$
Total Background	0.64 ± 0.09
$N_{ m tot}$	7.21 ± 0.23

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$
$$Z = 4.58 \sigma$$

How to make an observation

Pick an appropriate final state

Optimise the event selection

Anke Ackermann

Estimate the irreducible backgrounds

Check if you are above 50

Annweiler am Trifels, ZZ γ

Above 5o?

	Number of Events
Sherpa 2.2.11 $\ell\ell\ell\ell\gamma$ PowegPythia8 $ZH(\rightarrow Z\gamma)$ Signal	$\begin{array}{rrrr} 5.83 & \pm \ 0.21 \\ 0.74 & \pm \ 0.03 \\ 6.57 & \pm \ 0.21 \end{array}$
Non-prompt Photons	$0.49 \ \pm 0.09$
Misidentified Leptons	0.062 ± 0.014
Pile up	0.056 ± 0.014
$Z \to \tau \tau$ contribution	$\underline{0.035 \pm 0.006}$
Total Background	0.64 ± 0.09
$N_{ m tot}$	7.21 ± 0.23

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$
$$Z = 4.58 \sigma$$

Above 5o?

	Number of Events
Sherpa 2.2.11 $\ell\ell\ell\ell\gamma$ PowegPythia8 $ZH(\rightarrow Z\gamma)$ Signal	$\begin{array}{rrrr} 5.83 & \pm \ 0.21 \\ 0.74 & \pm \ 0.03 \\ 6.57 & \pm \ 0.21 \end{array}$
Non-prompt Photons	$0.49 \ \pm 0.09$
Misidentified Leptons	0.062 ± 0.014
Pile up	0.056 ± 0.014
$Z \to \tau \tau$ contribution	$\underline{0.035 \pm 0.006}$
Total Background	0.64 ± 0.09
$N_{ m tot}$	7.21 ± 0.23

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$

 $Z = 5\sigma$

Backup

Anke Ackermann

Analysis strategy

- fully leptonic decay: $Z \rightarrow ee, \mu\mu$
- signal: $4\ell + \gamma$
- pp $\rightarrow ZZ\gamma \rightarrow 4\ell + \gamma$ (incl. pp $\rightarrow ZH(\rightarrow Z\gamma) \rightarrow 4\ell + \gamma$)
- analysis of full Run 2 data (140 fb⁻¹)

ATLAS Work in Progress	Numbe
Sherpa 2.2.11 $\ell\ell\ell\ell\gamma$ PowegPythia8 $ZH(\rightarrow Z\gamma)$	$5.83 \\ 0.74$
Signal	6.5'

Event selection

- 2 pairs of 2 opposite-sign same-flavour (OSSF) leptons \rightarrow 4e, 4µ, 2e2µ
- invariant mass $m_{\ell\ell} > 40 \text{ GeV}$
- $min(|m_{\ell,1} m_Z| + |m_{\ell,2} m_Z|)$ -
- 1 photon, p_T > 20 GeV
- FSR rejection

Event selection

	Electrons	Muons	Photon
Kinematics	$p_T > 30, 25, 10, 10 \text{GeV}$		$p_T > 20 \text{GeV}$
	$\mid\eta\mid<2.47$	$\mid\eta\mid<2.5$	$\mid\eta\mid<2.37$
	excl. $1.37 < \eta < 1.52$		excl. $1.37 < \eta < 1.52$
Identification	tight (l_1) , medium	medium	tight
Isolation	Loose	PflowTightFixedRad (l_1) ,	FixedCutLoose
		PflowLooseFixedRad	$\Delta R(l,\gamma) > 0.4$
Multiplicity	$\geq 2 \text{ OSSF pairs}$		≥ 1 photon
Mass	m_{ll}	$> 40 \text{ GeV}, (m_{ll\gamma} + m_{ll}) > 2$	m_Z
Trigger	single lep	pton triggers	

$$40 \text{ GeV}, (m_{ll\gamma} + m_{ll}) > 2 \cdot m_Z$$

Signal Systematics

Source

Photon identification efficient Photon isolation efficiency Electron-Photon energy res Electron-Photon energy sca Electron identification effic Electron isolation efficiency Electron reconstruction eff Muon isolation efficiency Muon reconstruction efficie Muon trigger efficiency Pile-up reweighting Monte Carlo signal statisti Theoretical uncertainties Integrated luminosity Total systematic uncertain

Table 1: Systematic uncertainty sources that contribute less than 0.1% are not shown. Theoretical uncertainties are not yet included.

	Relative uncertainty	[%]
enev	1 9	[, ,]
CIICy	1.2	
solution	$-0.10 / \pm 0.14$	
	0.13 / + 0.14	
riency	2.1	
V	0.11	
<i>y</i> ficiency	0.11 0.5	
	0.6	
encv	0.5	
J	0.15	
	-1.4/+1.6	
ics	1.3	
	X.XX	
	0.83	
ty signal	3.6	

Non-prompt photon estimation

Ansatz:

The ratio of non-prompt photons produced in jets is independent of the simultaneous produced particles.

Non-prompt photon estimation

Anke Ackermann

ZZγ Analysis

LLY

 $N_{ZZ\nu}^{\gamma \text{fake}} = 0.49 \pm 0.003 \text{ (stat.)} \pm 0.09 \text{ (syst.)}$

p Z

Two independent interactions in the same bunch crossing

- Pile up contribution: $ZZ + \gamma$ ← photon cannot be associated to any vertex
- Ansatz: $N_{ZZ+\gamma} \sim P_{ZZ} P_{\gamma}$
- Determine pile up on particle level with MC overlay $(ZZ+\gamma)$
- Apply correction to derive estimate on reconstruction level

Matrix method

- baseline selection (loose) > signal selection (tight)
- real efficiency: prompt tight leptons prompt loose leptons
 - \hookrightarrow derive with MC

fake efficiency: fake tight leptons

- fake loose leptons
- \hookrightarrow derive in fake enriched CR with data (Z CR)

 \rightarrow loose leptons: electrons: loose ID, no iso muons: fail tight d0 significance, no iso

 \rightarrow tight leptons: electrons: medium ID, loose iso muons: tight d0 significance, loose iso

Real efficiencies

- $ZZ\gamma SR \rightarrow MC$
- ansatz: efficiency is independent of lepton (leading, subleading, etc.)
- comparison of lepton efficiencies in MC

• small differences \rightarrow features of lepton pT distribution

Fake efficiencies

Efficiency of the electrons

ZZγ Analysis

Misidentified leptons - validation

- VR1: SR with 1 OSSF pair & 1SSSF pair
 - ZZy SR data: 0 ± 0
 - ZZ SR data: 29 ± 5 🚺
- VR2: SR with 1 OSSF pair & 10SOF pair
 - ZZy SR data: 0 ± 0 $\sqrt{}$ (w/o mass cut: 1 ± 1)
 - ZZ SR data: 32 ± 6 🔽

55

