#### Putting jFEX & gFEX to the test – Measuring L1Calo trigger efficiencies

ATLAS-Heidelberg Meeting @ Trifels 2024 – Felix Fleischle – 18.7.24

#### Motivation – the Phase-I upgrade



#### Motivation – the Phase-I upgrade



ATLAS-Heidelberg Meeting Trifels



18.7.24

ATLAS-Heidelberg Meeting Trifels







#### Jet Feature Extractor (jFEX)

#### Global Feature Extractor (gFEX)

- Jets,  $\sum E_T$ ,  $E_T^{miss}$ ,  $\tau$
- 6 modules
  - 4 in the barrel region  $|\eta| \leq 1.6$
  - 2 endcap/forward 1.6  $<|\eta| \leq 4.9$



- Large-R jets,  $E_T^{miss}$ ,  $\sum E_T$
- 1 module covering the entire detector
- 3 FPGAs
  - 2 central region  $|\eta| \le 2.5$
  - 1 forward



#### Legacy vs. Phase-I



# Legacy vs. Phase-I

| Legacy                          | Phase-I                          |  |
|---------------------------------|----------------------------------|--|
| calibration on event-level      | calibration on jet-level in jFEX |  |
| Legacy jet algorithm            | Phase-I jet algorithms           |  |
| • $0.8 \times 0.8$ jet elements | • iFEX: Round $R < 0.4$ jets     |  |

• gFEX:  $0.6 \times 0.6$  gTowers





#### Jet trigger performance



# Efficiencies – Strategy

Tag-and-probe method

- Select a tag object which has triggered the event
- Use the remaining probe objects for a clean efficiency calculation

# Efficiencies – Strategy

Tag-and-probe method

- Select a tag object which has triggered the event
- Use the remaining probe objects for a clean efficiency calculation

**Tag:** Z boson / 2 leading  $e^+/e^-$ 

Obtained using Z event selection



# Efficiencies – Strategy

Tag-and-probe method

- Select a tag object which has triggered the event
- Use the remaining probe objects for a clean efficiency calculation



Obtained using Z event selection





# Efficiencies – TOB / offline jet matching

- For each offline jet:
  - Select TOB closest to offline jet in  $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
  - If  $\Delta R < 0.4$ , TOB and offline jet are **matched**







 $\varepsilon = \frac{\text{Number of events with } \mathbf{n} \text{ matched TOBs with } E > E_{th}}{\text{Number of events with at least } \mathbf{n} \text{ offline jets}}$ 



#### Integrated rate calculation









# Conclusion

- Phase-I is well equipped to deal with increased average luminosity and pile-up in Run-3
  - jFEX improved performance compared to legacy
  - gFEX worse performance for small-R jets (which it was not ultimately designed for)
- Phase-I introduces many promising changes while not only maintaining a jet performance similar to the Legacy system, but improving the trigger rate

#### **Image Sources**

[1] <u>https://atlas-</u> <u>runquery.cern.ch/data/arq\_240617/arq\_240617131852momc/popu</u> <u>pContent\_olclumi\_363738.html</u>

[2] <u>https://atlas-</u> <u>runquery.cern.ch/data/arq\_240617/arq\_240617132134pjba/popup</u> <u>Content\_olclumi\_456729.html</u>

The remaining images are taken from my Bachelors Thesis

# **Backup Slides**



Legacy vs. Phase-I

#### Legacy and Phase-I noise cuts:











ATLAS-Heidelberg Meeting Trifels















offline jet ø







# offline jet ø





#### Performance evaluation

Single-jet triggers

Multi-jet triggers

| Trigger  | Integrated Rate $f_{int}$ [kHz] | Trigger  | Integrated Rate $f_{int}$ [kHz] |
|----------|---------------------------------|----------|---------------------------------|
| L1_J50   | $38.2 \pm 1.5$                  | L1_3J50  | $0.63 \pm 0.20$                 |
| L1_jJ90  | 31.8 ± 1.4                      | L1_3jJ90 | $0.69 \pm 0.21$                 |
| L1_gJ50  | 37.6 ± 1.5                      | L1_4J50  | $0.06 \pm 0.06$                 |
| L1_J100  | $2.9 \pm 0.4$                   | L1_4jJ90 | $0.13 \pm 0.09$                 |
| L1_jJ160 | $2.5 \pm 0.4$                   |          |                                 |
| L1_gJ100 | $2.9 \pm 0.4$                   |          |                                 |