Calorimeters – Upbringing & Care

A brief review on my personal journey from clean to dirty physics and the things we are trying to measure with the coolest detectors in the world

Peter Loch

Department of Physics University of Arizona Tucson, Arizona, USA

Calorimeters – Upbringing & Care

A brief review on my personal journey from clean to dirty physics and the things we are trying to measure with the codest detectors in the world coldest

Peter Loch

Department of Physics University of Arizona Tucson, Arizona, USA

In the beginning...

1981 in the basement of the Physics Department of the University of Hamburg and I thought...

Peter Loch

In the beginning...

... this is a calorimeter!

And it is!

Peter Loch

Electromagnetic Showers

Electromagnetic Showers

Peter Loch

QCD drives fast shower development

Hadron interacts with nucleon in nuclei

- Like a fixed target collision
- Develops intra-nuclear cascade (fast)

Fast stage – hadron production in intranuclear cascade

Secondary hadrons escape nucleus

Neutral pions decay ~immediately into two photons

 \rightarrow electromagnetic cascade

Other hadrons can hit other nucleons \rightarrow internuclear cascade

Dominating signal contribution

Slow de-excitation of nuclei

Remaining nucleus in excited state

Evaporates energy to reach stable (ground) state Fission and spallation possible

Small signal contribution in ATLAS Tile calorimeter

Binding energy and low energetic photons Little to no signal contribution in ATLAS calorimeters

Large process fluctuations

~200 different interactions Highest probability process $\approx 2\%$

February 6, 2024

Slide 10

February 6, 2024

February 6, 2024

Hadronic Cascades in Calorimeters

30 Gev **Direct comparison of** Shower depth in detector $l(\lambda)$ electrons 2 0 longitudinal profiles dE/dx (GeV/cm 30 Gev pions Absolute energy loss per unit depth in EM and HAD shower in the same calorimeter 120 GeV 80 GeV P. Loch (Diss.), University of Hamburg 1992 10⁻¹ Testbeam data 30 GeV 10^{-2} 5 GeV 20 40 80 100 120 140 60 5 Gev Shower depth in detector x (cm) electrons Peter Loch

Slide 12

February 6, 2024

Moving on to the Experiment (1988-1992)

Moving on to the Experiment (1992-1993)

♦ H1 @ HERA (DESY Hamburg, 1992-2010)

* Deep inelastic electron/positron-proton scattering -

* Remove electron signals (in neutral current scattering) defines the hadronic final state in the calorimeter...

GEM at SSC (defunct)

* A zoo for calorimeters – have an idea, will be implemented (included tens of unbuildable, environmentally and operationally dangerous designs...)

***** Baby-steps for the forward calorimeter now in ATLAS...

Moving on to the Experiment (1993-1995)

♦ H1 @ HERA (DESY Hamburg, 1992-2010)

* Deep inelastic electron/positron-proton scattering -

* Remove electron signals (in neutral current scattering) defines the hadronic final state in the calorimeter...

GEM at SSC (defunct)

* A zoo for calorimeters – have an idea, will be implemented (included tens of unbuildable, environmentally and operationally dangerous designs...)

***** Baby-steps for the forward calorimeter now in ATLAS...

Moving on to the Experiment (1995-2025?)

♦ H1 @ HERA (DESY Hamburg, 1992-2010)

* Deep inelastic electron/positron-proton scattering -

* Remove electron signals (in neutral current scattering) defines the hadronic final state in the calorimeter...

GEM at SSC (defunct)

* A zoo for calorimeters – have an idea, will be implemented (included tens of unbuildable, environmentally and operationally dangerous designs...)

***** Baby-steps for the forward calorimeter now in ATLAS...

ATLAS at LHC (still alive – don't listen to Tilman!)

- ***** Complex hadronic final state with underlying event and pile-up
- ***** Precision jet measurements

CALORIMETERS IN ATLAS MODULES, READOUT & SIGNAL PROCESSING

ATLAS Calorimeters

Electromagnetic Calorimeters in ATLAS

Highly granular EM calorimeters

Liquid argon/lead sampling calorimeter

No azimuthal discontinuities due to accordion absorber structure in EMB and *Spanish-fan-shaped absorber* in the EMEC

Up to three longitudinal samplings + presampler*

Stable operations even in high luminosity running – little to no detector degradation due to ionization rates

Projective readout cells

Operational considerations

Slow signal collection in liquid argon (charge collection time $t_d \approx 450$ ns) in the presence of high pile-up (bunch crossings every 25 ns) – bipolar signal shaping

Absorption power

 $24 - 27 X_0$ for electrons and photons

EMB 109 568	$ \eta < 1.52$	
PreSamplerB 7808	$ \eta < 1.52$	$0.025 \times \pi/32$
EMB1	$ \eta < 1.4$	$0.025/8 \times \pi/32$
3 longitudinal segments in $ \eta <$	$1.4 < \eta < 1.475$	$0.025 \times \pi/128$
1.52 (EMB1-3) EMB2	$ \eta < 1.4$	$0.025 \times \pi/128$
	$1.4 < \eta < 1.475$	$0.075 \times \pi/128$
EMB 3	$ \eta < 1.35$	$0.050 \times \pi/128$
EMEC 63 744	$1.375 < \eta < 3.2$	
PreSamplerE 1536	$1.5 < \eta < 1.8$	$0.025 \times \pi/32$
EME 1	$1.375 < \eta < 1.425$	$0.050 \times \pi/32$
3 longitudinal segments in	$1.425 < \eta < 1.5$	$0.025 \times \pi/32$
$1.375 < \eta < 2.5$ (EME1-3), 2	$1.5 < \eta < 1.8$	$0.025/8 imes \pi/32$
longitudinal segments in 2.5 <	$1.8 < \eta < 2.0$	$0.025/6 \times \pi/32$
n < 3.2 (EME1-2)	$2.0 < \eta < 2.4$	$0.025/4 \times \pi/32$
	$2.4 < \eta < 2.5$	$0.025 \times \pi/32$
173,312	$2.5 < \eta < 3.2$	$0.1 \times \pi/32$
independent EME2	$1.375 < \eta < 1.425$	$0.050 \times \pi/128$
readout	$1.425 < \eta < 2.5$	$0.025 \times \pi/128$
channelss	$2.5 < \eta < 3.2$	$0.1 imes \pi/128$
EME 3	$1.5 < \eta < 2.5$	$0.050 \times \pi/128$

*readout layer ("massless gap") between cryostat wall and front face of calorimeter – provides signal proportional to energy loss in upstream material

Electromagnetic Calorimeters in ATLAS

Slide 20

February 6, 2024

Hadronic Calorimeters in ATLAS

Central hadronic calorimeters		Hadronic calorimeters	Tile(b	arrel)	2 880	$ \eta < 1$	
Scintillator/steel tile calorimeter				TileBar0/1			$0.1 \times \pi/32$
Signal is carried by photons and collected	by			TileBar2			$0.2 \times \pi/32$
photomultiplier tubes (2 channels per cell)	Uy		Tile (e	xtended barrel)	2 304	$0.8 < \eta < 1.7$	
Three longitudinal samplings with a project	tive readout	-		TileExt0/1			$0.1 \times \pi/32$
geometry				TileExt2	5 (22	15	$0.2 \times \pi/32$
East signal within 50 ns reduced effect of	nile un on		HEC		5632	$1.5 < \eta < 3.2$	0.1×-122
signal. (near) unipolar signals	pne-up on			HEC0/1/2/3		$1.5 < \eta < 2.5$ $2.5 < \eta < 3.2$	$0.1 \times \pi/32$ $0.2 \times \pi/16$
End-can badronic calorimeter		Forward calorimeters	FCAL		3 524	$3.1 < \eta < 4.9$	$\frac{\Delta x \times \Delta y}{\Delta x \times \Delta y}$
Lind-cap nationic calorimeter				FCAL0		$3.1 < \eta < 3.15$	$1.5 \mathrm{cm} \times 1.3 \mathrm{cm}$
Liquid argon/copper calorimeter						$3.15 < \eta < 4.3$	$3.0 \mathrm{cm} \times 2.6 \mathrm{cm}$
Four longitudinal samples						$4.3 < \eta < 4.83$	$1.5 \mathrm{cm} imes 1.3 \mathrm{cm}$
High stability in signal generation without	observable			FCAL1		$3.2 < \eta < 3.24$	$1.7 \mathrm{cm} \times 2.1 \mathrm{cm}$
detector degradation due to high luminosit	ties					$3.24 < \eta < 4.5$	$3.3 \text{ cm} \times 4.2 \text{ cm}$
Projective readout geometry	14.241	Dipdividual		ECAL 2		$4.5 < \eta < 4.81$ $3.20 < \eta < 3.32$	$1.7 \text{ cm} \times 2.1 \text{ cm}$ 2.7 cm $\times 2.4 \text{ cm}$
Forward calorimeter	cha	nnels in		I CALZ		$3.32 < \eta < 3.32$ $3.32 < \eta < 4.6$	$5.4 \text{ cm} \times 4.7 \text{ cm}$
Liquid argon/copper (EM) and liquid		otal*				$4.6 < \eta < 4.75$	$2.7 \mathrm{cm} \times 2.4 \mathrm{cm}$
argon/tungsten (HAD)							
Thin gap calorimeter (charge collection tim	20	Full hadronic covera	age	C	alorin	neter read	lout
t a 50 ma) antimized for high ionization r		provided by the EM	and	1	waa la		- alla
$t_d \approx 50$ ns) optimized for high ionization r	ales due to	HAD calorimeters v	vith a	1/ /240	regula	r calorimeter	ceiis
Non-projective readout geometry features electrodes		combined depth ≥ 1 nearly everywhere w	101 vithin 10,112	pre-sampler/gap scintillator			
Dense absorber acts as radiation shield for muon spectrometer	muon	the whole acceptance $ \eta \lesssim 4.9$	187652		independent readout channels		
L				*Tile has duc cell) with on measuremen	Il readou ly one of its	it (2 electronic) Those used fo	channels per r cell energy

Hadronic Calorimeters in ATLAS

Signal Formation Example: ATLAS LAr Calorimeter

Peter Loch

Sampling calorimeter

Ionization electrons collected in electric field between absorbers

Collect charge in electric field *E*

Measure current

Characteristic features

Collected charge and current are proportional to energy deposited in active medium

$$Q(t = t_d) = N_e e/2$$

$$I(t = t_0) = N_e e / t_d$$

 $N_e(t) = N_e(t = t_0)/d \cdot (d - x(t))$

Drift time t_d for electrons in active medium

Determines charge collection time

Can be adjusted to optimize calorimeter performance

 $t_d \approx 450(50)$ ns for d = 2.25(0.25) mm and E = 1 kV/mm field – values in () are for the FCal

ATLAS LAr Calorimeter: From Signal to Cell Energy Response States

Peter Loch

Slide 24

ATLAS LAr Calorimeter: From Signal to Cell Energy Response States

What is response?

Reconstructed calorimeter signal

Based on the direct measurement – the raw signal May include noise suppression (digital filtering) All cell level corrections for hardware failures and run conditions are applied

Has the concept of **signal** (or **energy**) **scale**

Basic signal before final calibrations (EM scale)

Derived from electron signals in test beams and monitored *in-situ* in collision events

Ideal EM scale – does not reconstruct full particle energy!

$$E_{\text{raw}} = A_{\text{peak}} \times \underbrace{[\text{bunch intensity}]}_{\text{correction for position of bunch}} \times \underbrace{[\text{ADC} \rightarrow \text{nA}]}_{\text{current calibration}}$$

online
$$\times \underbrace{([\text{HV}] \times [\text{cross-talk}] \times [\text{purity}])}_{\text{electronic and efficiency corrections}} \times \underbrace{[\text{nA} \rightarrow \text{MeV}]}_{\text{energy calibration}}$$

Slide 25

same information content for LAr and Tile cells!

provenance: Flags signal processing (e.g., Filtered reconstruction) masked cells (e.g., noise bursts), estimated signal For dead cells, etc. ...

Cell signal at electromagnetic energy scale

Peter Loch

Pile-up in the ATLAS LAr Calorimeter

Pile-up at the LHC

Origin

High collision luminosity = proton beam intensities \otimes bunch crossing frequency \otimes high inclusive *pp* cross section

Comparably slow signal collection in LAr

In-time pile-up

Signals generated by particles from additional *pp* collisions in the same bunch crossing

Out-of-time pile-up

Signal fragments from previous and following bunch crossing added to the in-time signal

Online mitigation strategy

Fast bipolar signal shaping measures current $I_0 = I(t = 0)$

Shape has integral zero – in-time pileup is on average canceled by out-oftime pile-up due to negative weight of signal remnants

Slide 26

February 6, 2024

Pile-up in the ATLAS LAr Calorimeter

Pile-up at the LHC

Origin

High collision luminosity = proton beam intensities \otimes bunch crossing frequency \otimes high inclusive *pp* cross section

Comparably slow signal collection in LAr

In-time pile-up

Signals generated by particles from additional *pp* collisions in the same bunch crossing

Out-of-time pile-up

Signal fragments from previous and following bunch crossing added to the in-time signal

Online mitigation strategy

Fast bipolar signal shaping measures current $I_0 = I(t = 0)$

Shape has integral zero – in-time pileup is on average canceled by out-oftime pile-up due to negative weight of signal remnants

Digital Signal Filter

Concept

W.E. Cleland and E.G. Stern, Nucl. Inst. Meth. A338 (1994) 467.

Unfold physics pulse shape from a measured pulse shape

Pulse shape measured in 4 digital samples s_i taken at t_0 + 25 ns, t_0 , t_0 - 25 ns, t_0 - 50 ns

Measured (digitized) shape is affected by transmission line characteristics and signal transfer functions introduces by e.g., impedance mismatches in the readout electronics

Linear filter with coefficients a_i constraint by pulse shape –

 $\sum_{i=1}^{N_s} a_i g_i = 1$

 g_i is normalized pulse shape in sample *i* at time t_i , with

 $\sum_{i=1}^{N_s} a_i \,\partial g_i / \partial t = 0$

Digital filtering

```
Amplitude/peak \propto I_0 \propto E_0
```

```
A_{\text{peak}} = \sum_{i=1}^{N_s} a_i (s_i - p_i)
```

with the sample reading s_i and the pedestal reading p_i (ADC counts for I = 0 on input to electronics) Peak time:

 $A_{\text{peak}}t_{\text{peak}} = \sum_{i=1}^{N_s} b_i(s_i - p_i)$

Calibration system

Coefficients – constraint by injecting known current pulses in the electronic chain and transfer observed calibrated pulse shape to known physics pulse shapes

Pedestals – read samples without injecting current into the system and measure average and fluctuations (electronic noise)

Auto-correlation – signal history couples fluctuations (noise) in time sampled reading

Slide 28

Peter Loch

February 6, 2024

Formal Extraction of Filter Coefficients

Peter Loch

February 6, 2024

```
CALORIMETER
SIGNALS FOR
PHYSICS - TOPO-
CLUSTER AND TOPO-
TOWERS
```

ATLAS Coll., Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 Eur.Phys.J.C.77 (2017) 490 arXiv:1603.02934 [hep-ex]

Topo-cluster Formation/Growth Rules

Calorimeter cell signals are collected into topological clusters

- Collects signals from individual or close-by particle showers into 3-dim energy blobs
 - Connect cell signals following spatial signal significance patterns in three dimensions
 - Uses seed and growth control conditions, plus envelope

Default 4-2-0 configuration (S = 4, N = 2, P = 0)

Collects cells across subsystem boundaries

Slide 31

February 6, 2024

More on formation

Growing algorithm requires splitting between local signal maxima

Guided by spatial signal structures observed in the high granularity EM calorimeter Splitting efficiency depends on calorimeter readout granularity

Single pions, no pile-up, noise thresholds set for 30 interations/bunch crossing, bunch distance 50 ns (early Run 1)

Shower dependent topo-cluster yield

Compact EM showers split into fewer clusters than hadronic showers

Collision environment: topo-clusters do not represent individual particles, they are a proxy for energy flow generated by particles!

JFOWLII COILLFOI CEIIS

 $|E_{\text{cell}}^{\text{EM}}|/\sigma_{\text{noise,cell}}^{\text{EM}} > 2$

Slide 35

Peter Loch

February 6, 2024

Slide 36

February 6, 2024

Signal Significance for Clustered Cells in ZeroBias Data

Slide 37

Topo-cluster Moments/Features

Principal geometry

Cluster moments (features)

Energy-weighted first and second moments

Lateral and longitudinal extensions (normalized and absolute)

Signal density measure Signal relevance and compactness measures

> Signal significance EM/HAD energy sharing

- \vec{c} centre of gravity of cluster, measured from the nominal vertex (x = 0, y = 0, z = 0) in ATLAS
- $\vec{x_i}$ geometrical centre of a calorimeter cell in the cluster, measured from the nominal detector centre of ATLAS
- \vec{s} particle direction of flight (shower axis)
- $\Delta \alpha$ angular distance $\Delta \alpha = \angle(\vec{c}, \vec{s})$ between cluster centre of gravity and shower axis \vec{s}
- λ_i distance of cell at $\vec{x_i}$ from the cluster centre of gravity measured along shower axis \vec{s} ($\lambda_i < 0$ is possible)
- r_i radial (shortest) distance of cell at $\vec{x_i}$ from shower axis \vec{s} ($r_i \ge 0$)

Location & environment

- Position and direction
 - Depth of topo-cluster in calorimeter
 - Distance from vertex
 - Angular deflection from vertex direction
- Environment

Isolation

Local Hadronic Calibration (LCW)

Local cluster calibration

Uses cluster shape and location to apply appropriate calibrations

Observables are proxies for shower shapes – sensitive to electromagnetic or hadronic shower development Calibration reference is deposited energy at cluster location

Additional corrections for nearby dead material losses and out-of-cluster losses (includes isolation measure)

All calibration functions are derived from full single particle simulations

Direction and energy scans with π^0 , π^{\pm} – **no pile-up included**

Deposited energies collected in clusters formed with $\langle \mu \rangle$ dependent $\sigma_{\text{noise,cell}}^{\text{EM}}$

Calibration factors stored in multi-dimensional lookup tables

Final cluster representation

Massless four-momentum (E, η , φ , m = 0) on EM and LCW scale

LCW: Classification

February 6, 2024

LCW: Hadronic Calibration

Peter Loch

February 6, 2024

LCW: Out-of-cluster Correction

arXiv:1603.02934 (to appear in EPJC)

February 6, 2024

Slide 42

LCW: Dead Material Correction

Peter Loch

WELCOME TO THE MACHINE!

July 18, 2024

Conclusions & Outlook

ATLAS Calorimeters

Successfully operating since 2010

Highly efficient and stable system

Highly optimized for total absorption

Precise energy flow reconstructions for jets, event shapes, hadronic recoil etc. in both pp (with increasing levels of pile-up) and heavy ion collision environments

Effective signal definition – topo-clusters and topo-towers

Drop a large amount of "noise only" cells at early stage of reconstruction Pile-up suppression due to detector readout and adaptive signal significance thresholds

Present day local hadronic calibration needs improvements – machinelearning-based approaches under study (see recent JetEtMiss PubNote)

Future challenges

Hi-lumi LHC pile-up

Cluster formation/splitting sufficient to maintain precision in energy flow reconstruction?

More use of/combination with topo-towers?

Machine learning for cluster formation and calibration

Several approaches under study

Biases and gains not yet obvious for formation,

10

Slide 45

Peter Loch

February 6, 2024

 E_{clus}^{dep} [GeV]

 10^{2}

Expected final state components:

Expected final state components:

* Not observed yet – needs clean up and calibration

Expected final state components:

* Not observed yet – needs clean up and calibration

* Fine tuning and calibration (observed!)

Expected final state components:

Not observed yet – needs clean up and calibration

Leadership & location

* Research & Spokesperson (elected for life, already in place)

* Fine tuning and calibration (observed!)

* Location

Peter Loch

Expected final state components:

* Not observed yet – needs clean up and calibration

* Fine tuning and calibration (observed!)

Leadership & location

* Research & Spokesperson (elected for life, already in place)

* Location

Additional Material

Click here!

https://indico.cern.ch/event/1366444/attachments/2781618/4879898/Atlas.02.06.2024%20-%20Additional%20material.pdf

LCW Cell Weights

- Full topo-cluster calibration is projected back on cell weights
 - EM likelihood \mathcal{P}_{clus}^{EM} defines EM/HAD mixture of factors
 - $\mathcal{P}_{clus}^{EM} = 1$ for pure EM clusters, $\mathcal{P}_{clus}^{EM} = 0$ for pure HAD
 - Hadronic calibration & dead material correction produce individual cell weights

Procedure	Parameters	Effective cell signal weight after each step		
(1) Cluster formation	$w_{\rm cell}^{ m geo}$	w _{cell} ^{geo}		
(2) Classification	$\mathcal{P}_{\mathrm{clus}}^{\mathrm{EM}}$	$w_{\rm cell}^{\rm geo}$		
(3) Calibration	$w_{\text{cell}}^{\text{em-cal}}(=1)$ $w_{\text{cell}}^{\text{had-cal}}$	$w_{\text{cell}}^{\text{geo}} \left[\mathcal{P}_{\text{clus}}^{\text{EM}} w_{\text{cell}}^{\text{em-cal}} + (1 - \mathcal{P}_{\text{clus}}^{\text{EM}}) w_{\text{cell}}^{\text{had-cal}} \right]$		
(4) Out-of-cluster	$w^{ m em-ooc}_{ m cell} \ w^{ m had-ooc}_{ m cell}$	$w_{\text{cell}}^{\text{geo}} \prod_{\kappa \in \{\text{cal,ooc}\}} \left[\mathcal{P}_{\text{clus}}^{\text{EM}} \cdot w_{\text{cell}}^{\text{em}-\kappa} + (1 - \mathcal{P}_{\text{clus}}^{\text{EM}}) \cdot w_{\text{cell}}^{\text{had}-\kappa} \right]$		
(5) Dead material	$w^{ m em-dm}_{ m cell} \ w^{ m had-dm}_{ m cell}$	$w_{\text{cell}}^{\text{LCW}} = w_{\text{cell}}^{\text{geo}} \prod_{\kappa \in \{\text{cal,ooc,dm}\}} \left[\mathcal{P}_{\text{clus}}^{\text{EM}} w_{\text{cell}}^{\text{em}-\kappa} + (1 - \mathcal{P}_{\text{clus}}^{\text{EM}}) w_{\text{cell}}^{\text{had}-\kappa} \right]$		

Calorimeter Topo-tower Revival

Slide 54

Calorimeter Topo-tower Revival

New for Run3

- Drop of calorimeter granularity at $|\eta| > 2.5$
 - Few topo-clusters formed from large cells
 - Energy flow highly discrete large voids in (y, φ) plane, sparse four-momentum occupancy
 - Median transverse momentum density measurement deteriorates
- Re-introduce calorimeter towers
 - Imposes different view on non-projective FCal readout
 - Well-defined catchment area for area-based pile-up suppression algorithms $\Delta y \times \Delta \varphi = 0.1 \times 0.1$
 - Uses only cells from topo-clusters (noise suppression identical)

Calorimeter Topo-towers

- Considerations
 - Topo-towers are represented by the same data object as topo-clusters
 - Possible to add moments (not all are meaningful for towers)
 - Large amount of data to be stored
 - Inclusive towers (all cells) completely impractical
 - Too many topo-towers (from cells after noise suppression)
- Topo-towers in the AOD
 - Only for $|\eta| > 2.5$ ForwardTopoTowers
 - No (cell) signal overlap with topo-clusters with $|\eta| < 2.5 - can be combined for$ unambiguous energy flow reconstruction
 - Ghost-associated with jets
 - Support pile-up jet suppression outside of tracking aceptance

Calorimeter Topo-towers

Calorimeter signal multiplicities

Examples of MC Modeling

(topo-clusters in jets)

(topo-cluster in jets)

⁽topo-clusters in jets)

MC Modeling Problems

 $log(\lambda_{clus})$ distribution of inclusive topo-cluster sample (no jet environment required)

(pile-up from data overlaid on hard scatter MC simulation)

Feature Choices

inclusive (all topo-clusters)
 < 10% electromagnetic energy deposit
 > 90% electromagnetic energy deposit

Feature Choices

E^{em} /E^{dep} 10⁵ 10⁴ П R^{em} 10^{3} 10^{2} 10 -100-50 50 100 ۵ t_{clus} [ns]

Response driven by out-of-time pile-up contributions: net additional signal gain for $t_{clus} \lesssim$ - 12.5 ns and $t_{clus} \gtrsim$ 12.5 ns yields unproportional signal

Machine Learning: Network Architecture

Deep Neural Network (DNN)

* Tool

- Keras with TensorFlow
- * Architecture
 - Four hidden layers with 64/64/128/256 nodes using a tanh(x) + 1 or swish activation
 - One linear layer with one node
- * Loss metric
 - Mean Absolute Error (MAE) initially, now using Leaky
 Gaussian Kernel
 - Optimization algorithm ADAM
- ***** Hyperparameters (explorations mostly ongoing).
 - 100 epochs for training
 - Learning rates 0.001

