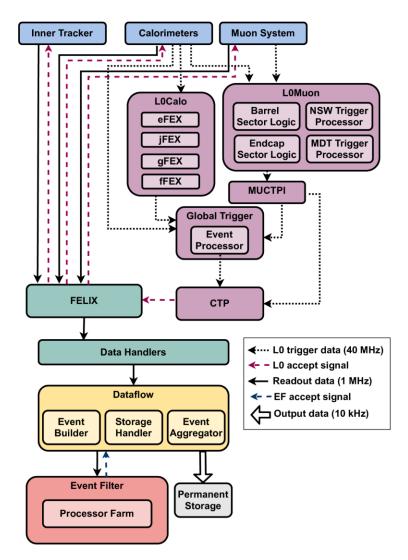
ReTrac(k)ing our Steps: Track Reconstruction with Graph Neural Networks

19.07.2024 **Poppy Hicks** Heidelberg @ Trifels

ATLAS Phase-II Upgrade: **TDAQ**

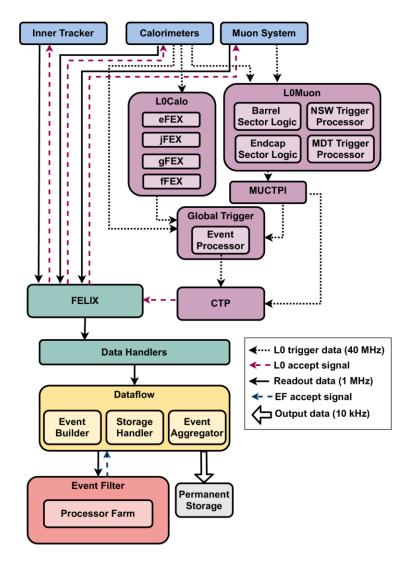


AIM OF TDAQ: to ensure optimal data-taking conditions and select most interesting collision events for study

L0 Trigger: Processes muon and calorimeter data at 40 MHz. Accepts at 1 MHz.

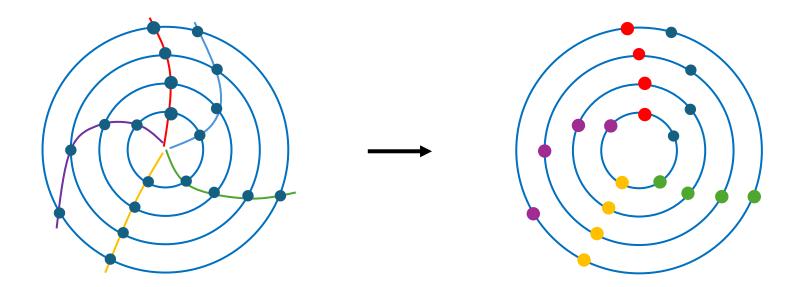
Event Filter: Particle tracks reconstructed with ITk data; full event reconstruction. Accepts at 10 KHz.

ATLAS Phase-II Upgrade: **TDAQ**



AIM OF TDAQ: to ensure optimal data-taking conditions and select most interesting collision events for study

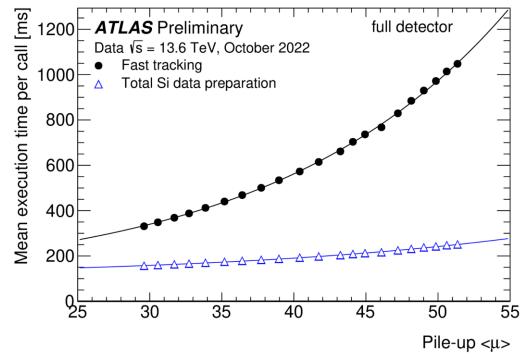
Provide tracks that allow for filtering down to 10 kHz of "interesting events" by the Event Filter



TRACK RECONSTRUCTION: Label successive hits from the same particle as a 'track'

Combinatorial Kalman Filter (CKF)

- Traditional method
- High efficiency, low fake rate
- Scales worse than linear in event size
- 'CPU intensive'
 - <u>ATLAS TDAQ Tracking Amendment</u>



https://cds.cern.ch/record/2875779

→ R&D on track reconstruction acceleration

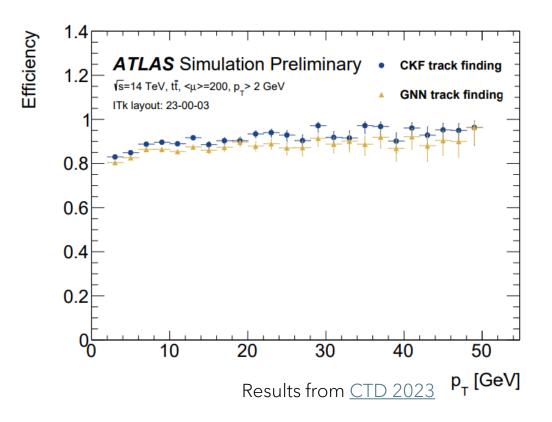
Track reconstruction with graph neural networks

Combinatorial Kalman Filter (CKF)

- Traditional method
- High efficiency, low fake rate
- Scales worse than linear in event size
- 'CPU intensive'
 - ATLAS TDAQ Tracking Amendment

Graph-based machine learning

- Comparable efficiency and fake rates to CKF
- Scaling that is close to linear in event size
 - As shown by Exa.TrkX arXiv:2103.06995
- Benefits from GPU acceleration

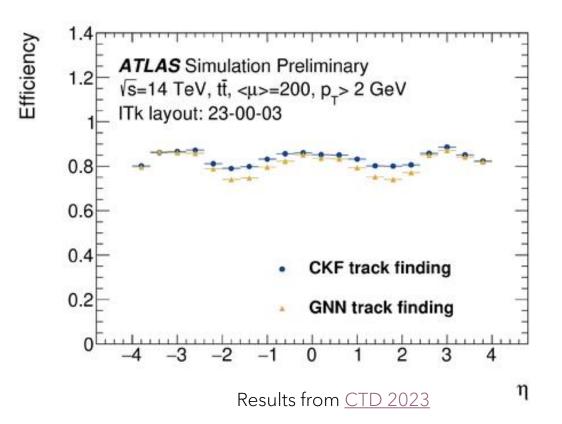


Combinatorial Kalman Filter (CKF)

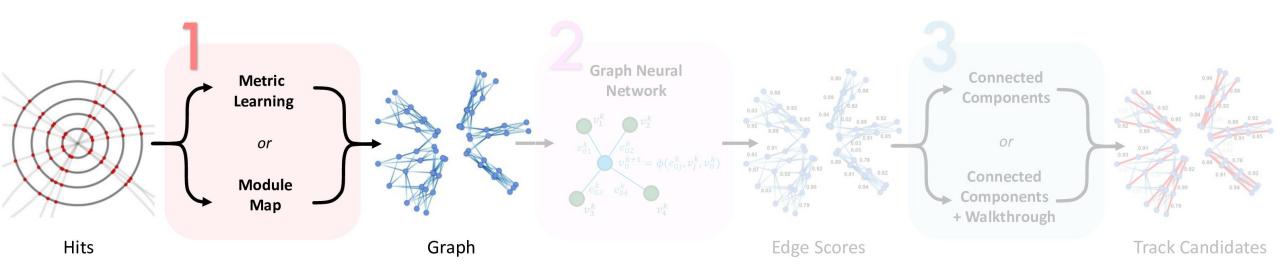
- Traditional method
- High efficiency, low fake rate
- Scales worse than linear in event size
- 'CPU intensive'
 - ATLAS TDAQ Tracking Amendment

Graph-based machine learning

- Comparable efficiency and fake rates to CKF
- Scaling that is close to linear in event size
 - As shown by Exa.TrkX <u>arXiv:2103.06995</u>
- Benefits from GPU acceleration



How?



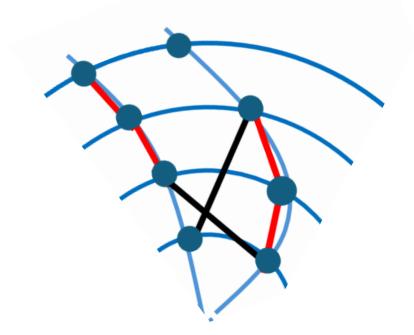
1. GRAPH CONSTRUCTION

Assign hits as nodes; connect these nodes with edges to allow connecting nodes possibility of belonging to the same particle

- Embed hits into a latent space using an MLP
- Connect hits within some radius in latent space

GOAL:

- Build true edges (efficiency)
- Limit false edges (purity)

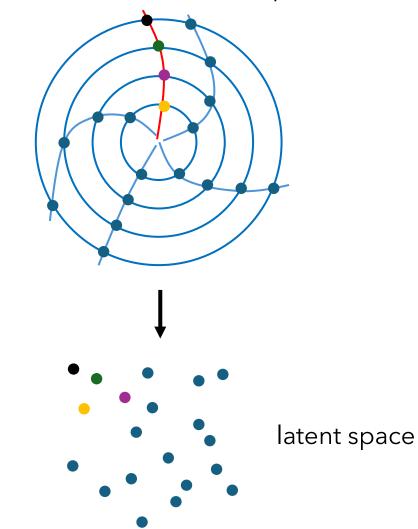


- Embed hits into a latent space using an MLP
- Connect hits within some radius in latent space

GOAL:

- Build true edges (efficiency)
- Limit false edges (purity)

real space

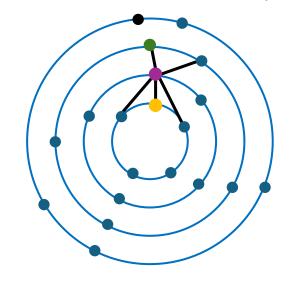


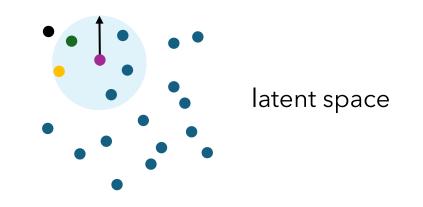
- Embed hits into a latent space using an MLP
- Connect hits within some radius in latent space

GOAL:

- Build true edges (efficiency)
- Limit false edges (purity)

real space



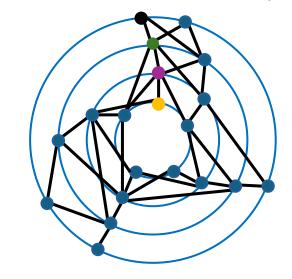


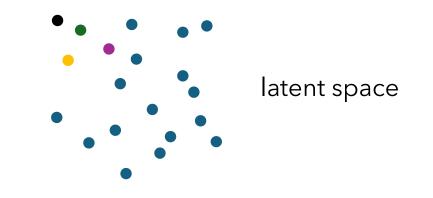
- Embed hits into a latent space using an MLP
- Connect hits within some radius in latent space

GOAL:

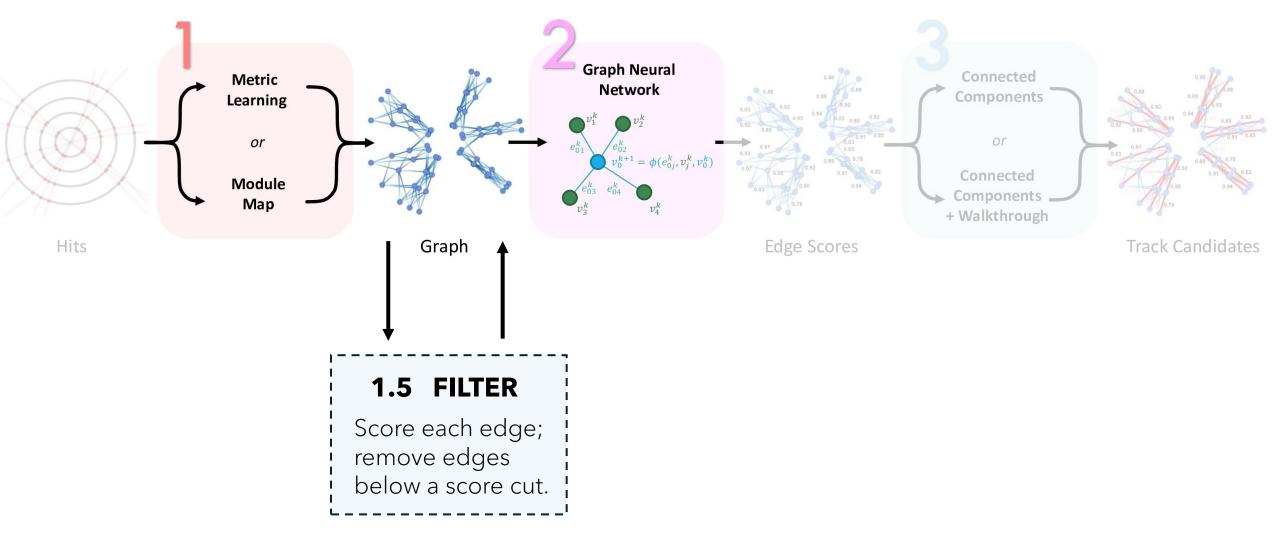
- Build true edges (efficiency)
- Limit false edges (purity)

real space

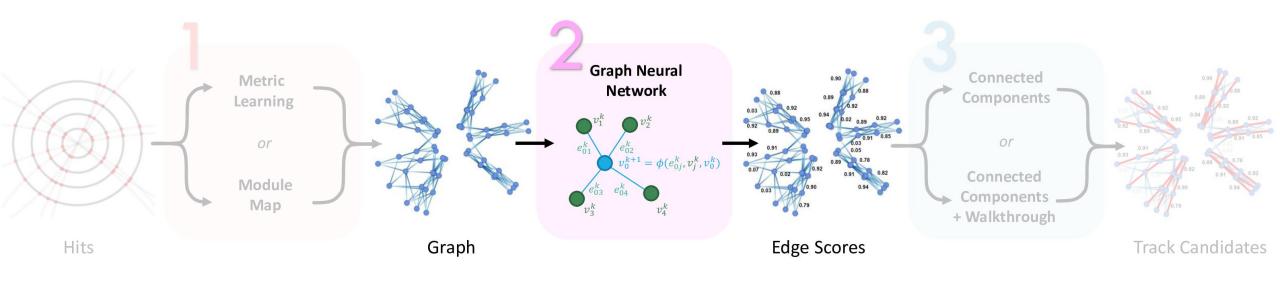




How?

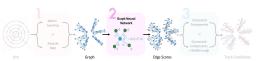


How?

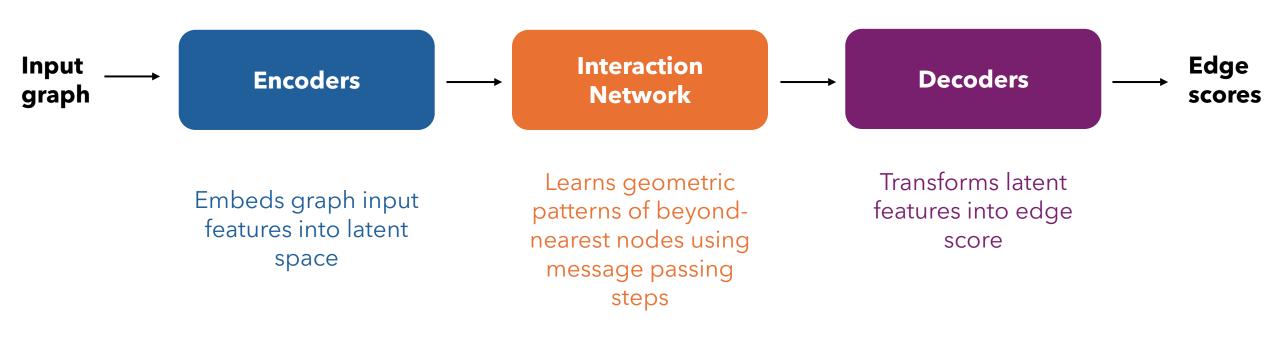


2. EDGE CLASSIFICATION

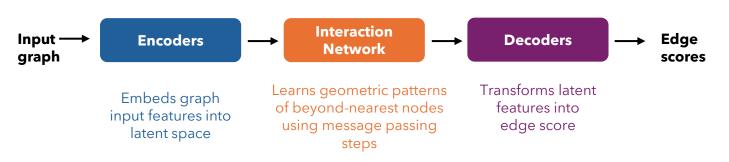
Feed graph into a trained interaction network that will assign a score to each edge, quantifying the probability connected nodes belong to same particle.



The Interaction Network

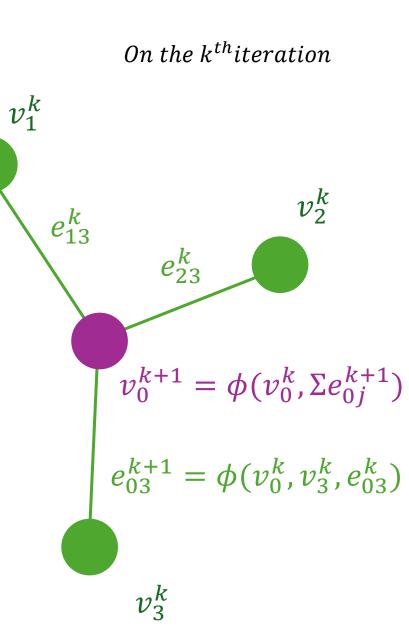


The Interaction Network: Message Passing

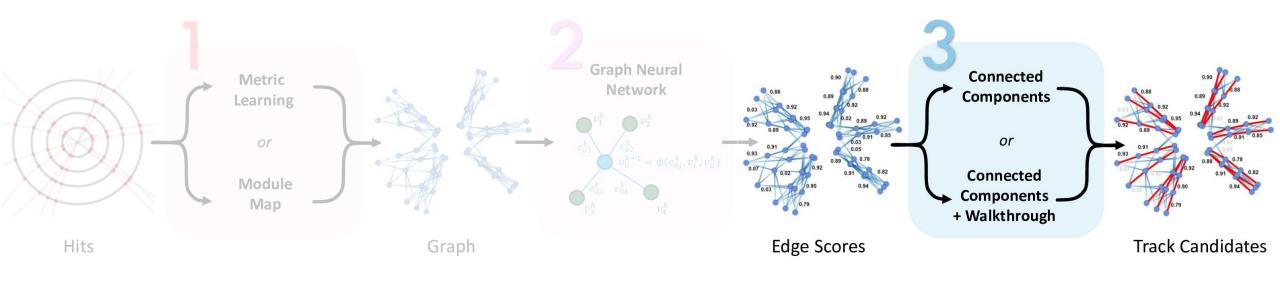


One iteration:

- 1. Node features (spatial position) are encoded
- 2. Encoded features concatenated and encoded to create edge features
- 3. Edge features are aggregated to create next round of encoded node features



How?



3. GRAPH SEGMENTATION

Use an algorithm to connect scored edges into track candidates.

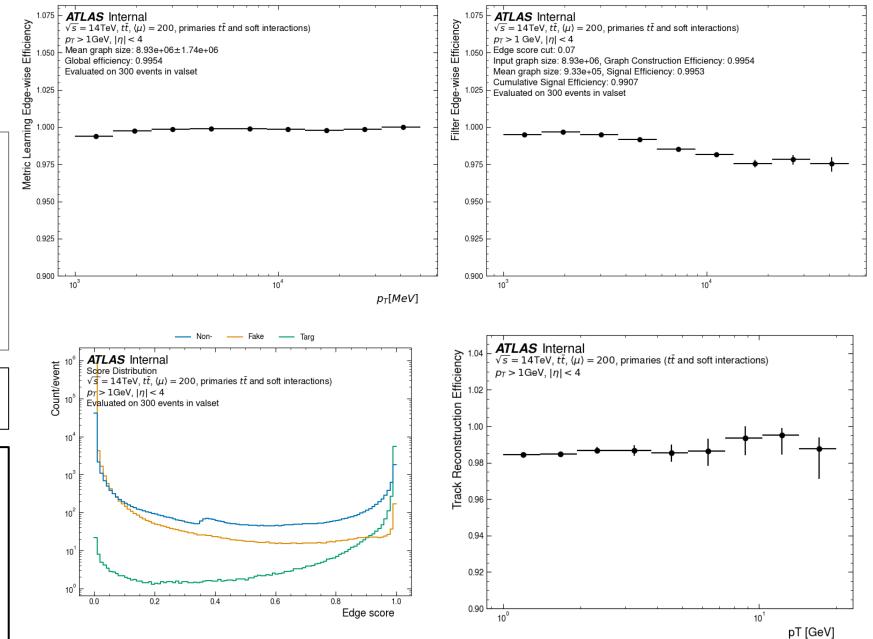
Baseline

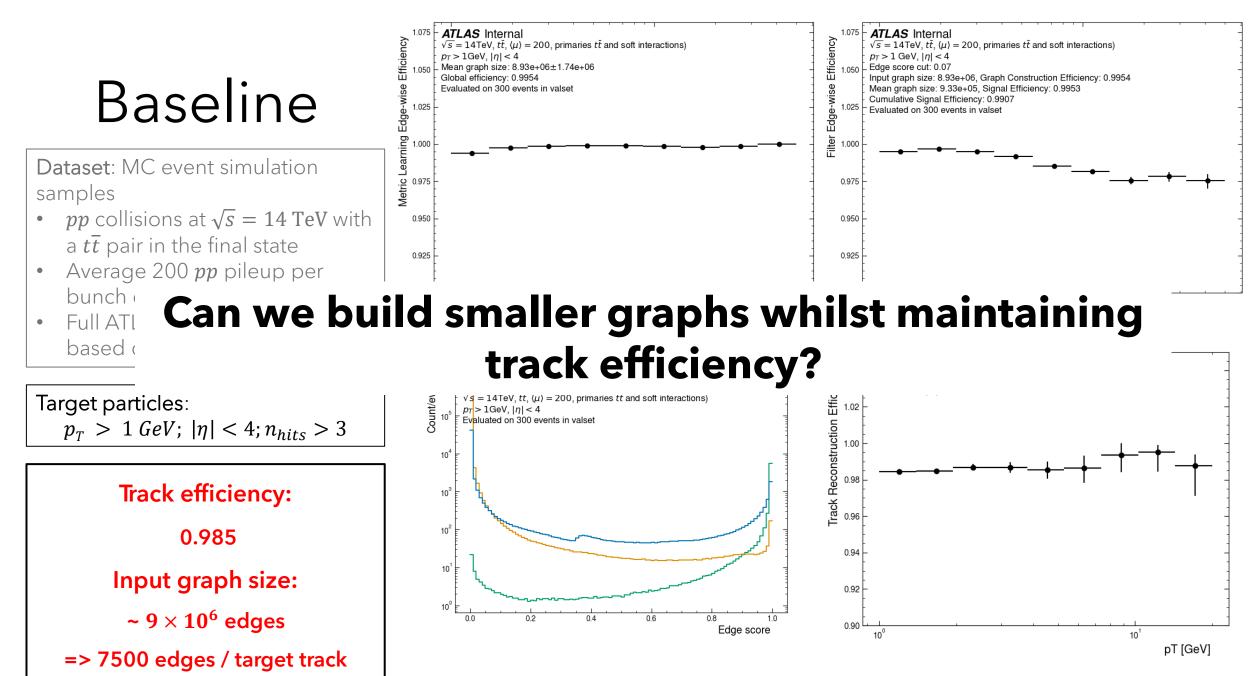
Dataset: MC event simulation samples

- pp collisions at $\sqrt{s} = 14$ TeV with a $t\overline{t}$ pair in the final state
- Average 200 *pp* pileup per bunch crossing
- Full ATLAS detector simulation based on GEANT 4

Target particles: $p_T > 1 \text{ GeV}; |\eta| < 4; n_{hits} > 3$

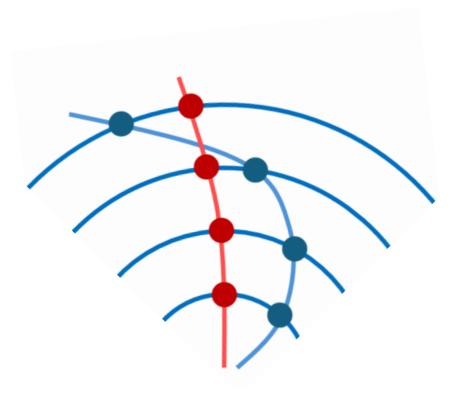
Track efficiency: 0.985 Input graph size: ~ 9 × 10⁶ edges => 7500 edges / target track



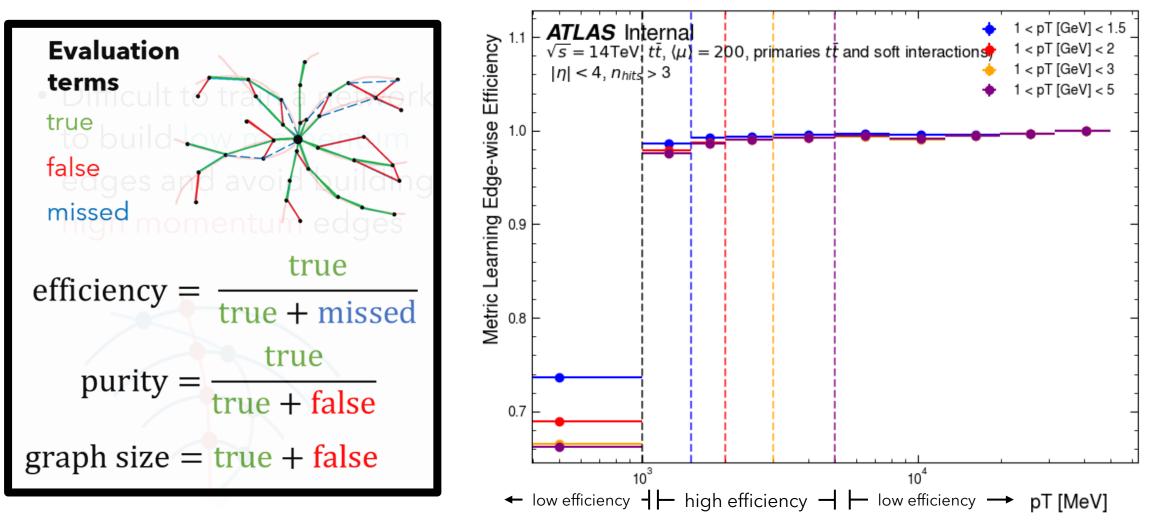


Physics-Informed Graph Optimization

- High momentum and low momentum tracks are easy to differentiate
- Is it possible to train networks to construct only high (or low) momentum tracks?
- Would these specialised networks build smaller graphs?

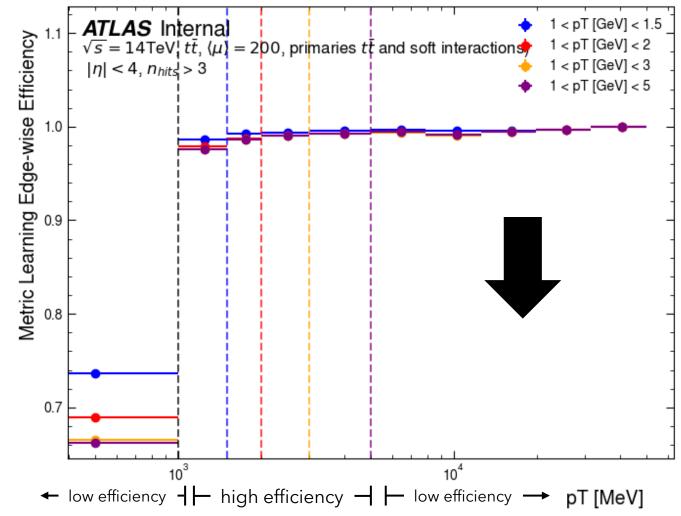


Building only low p_T tracks - **NO**



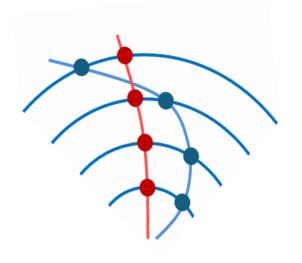
Building only low p_T tracks - **NO**

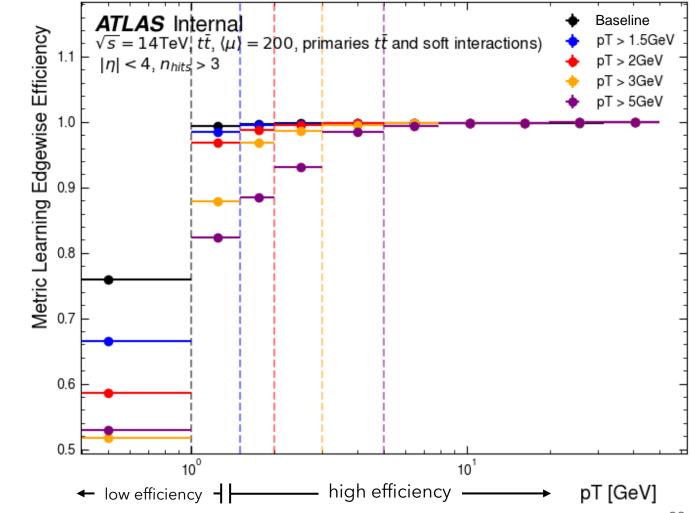
 Difficult to train a network to build low momentum edges and avoid building high momentum edges

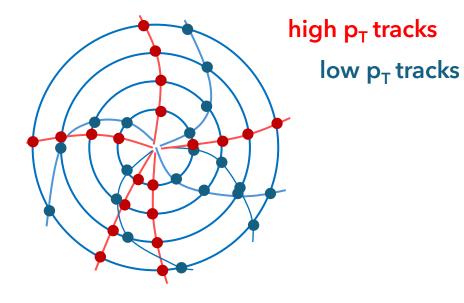


Building only high p_{T} tracks - YES

 It is possible to train a network to build high momentum edges whilst avoid building low momentum edges!





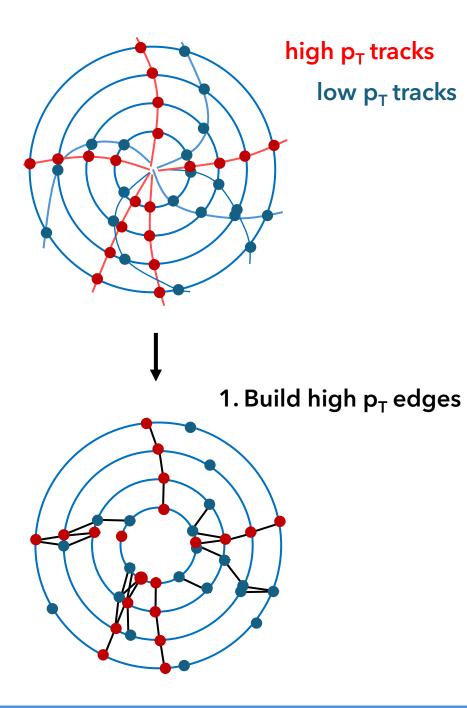


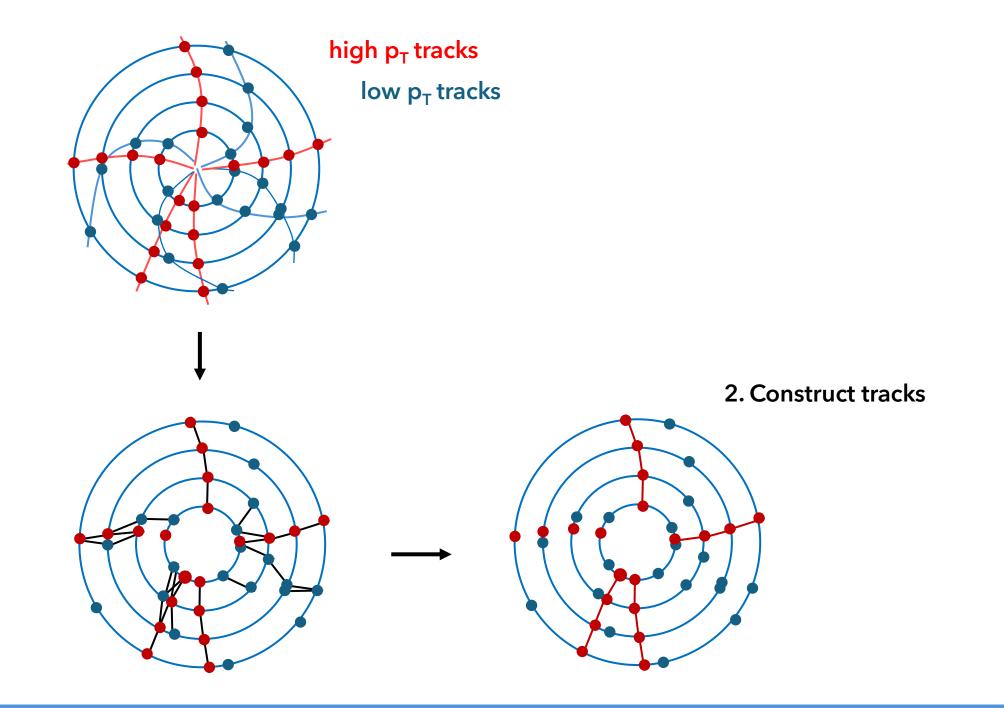
STAGE ONE

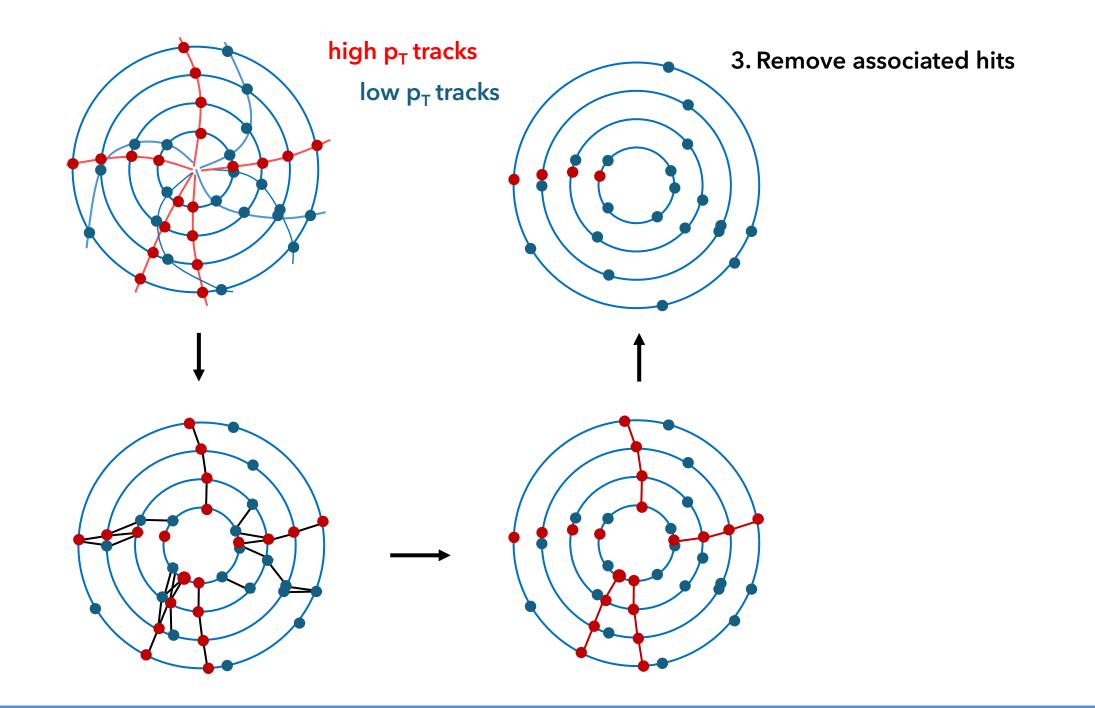
- Build graphs aimed at p_T > [1.5, 2, 3, 5] GeV
- Construct tracks
- Remove hits associated with constructed tracks

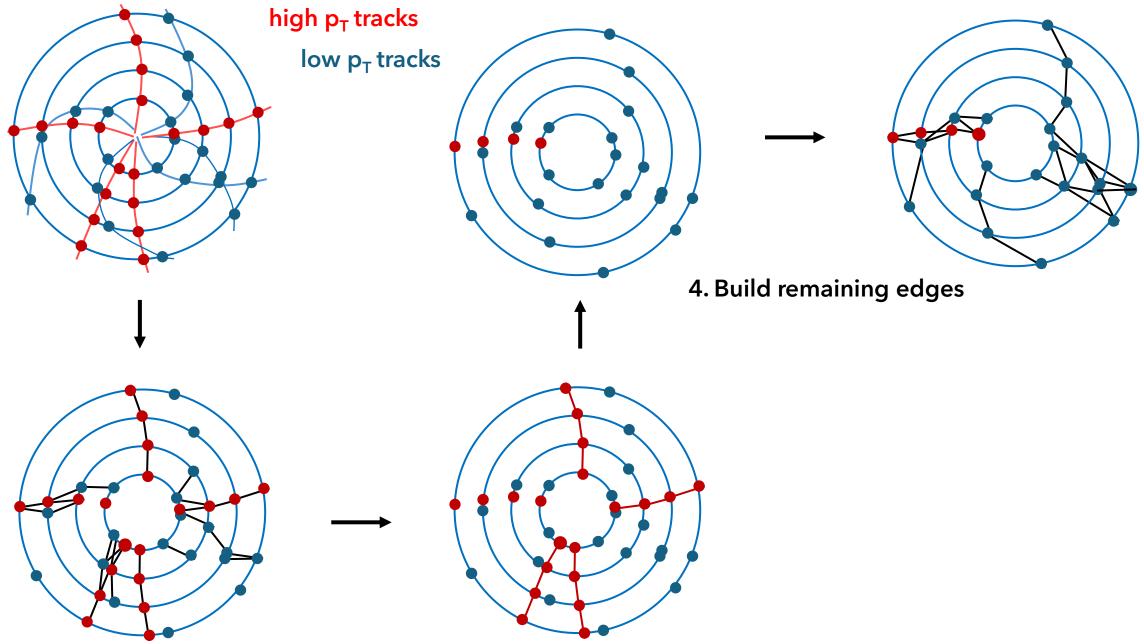
STAGE TWO

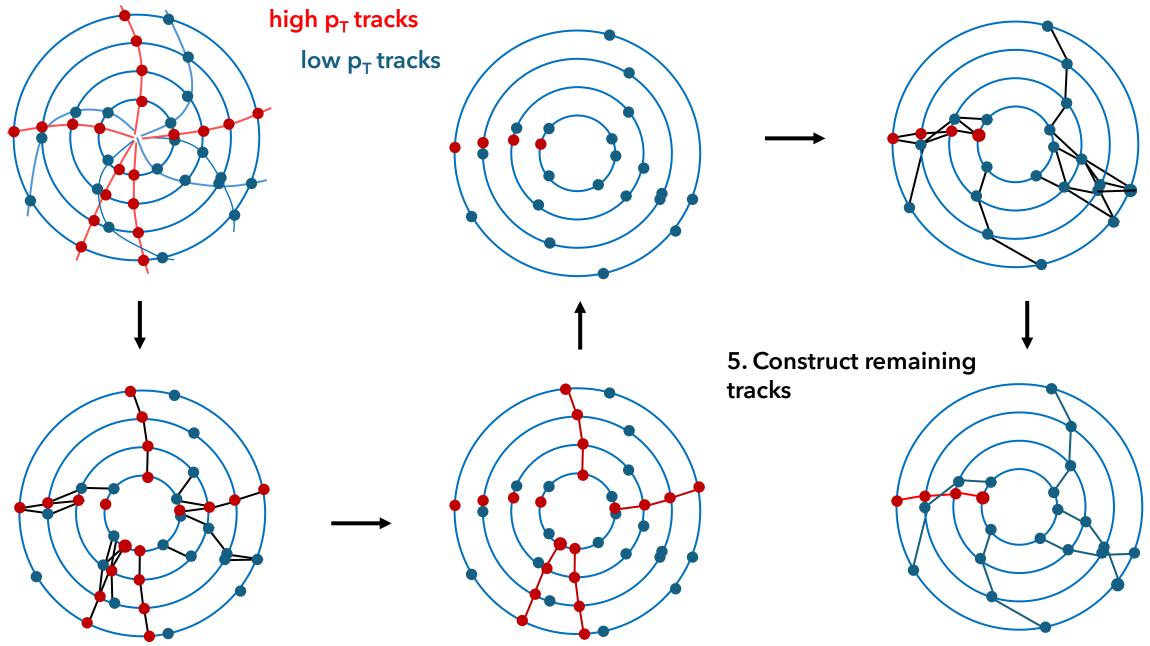
- Build graphs aimed at 1 < p_T [GeV] < [1.5, 2, 3, 5] using reduced dataset
- Construct tracks









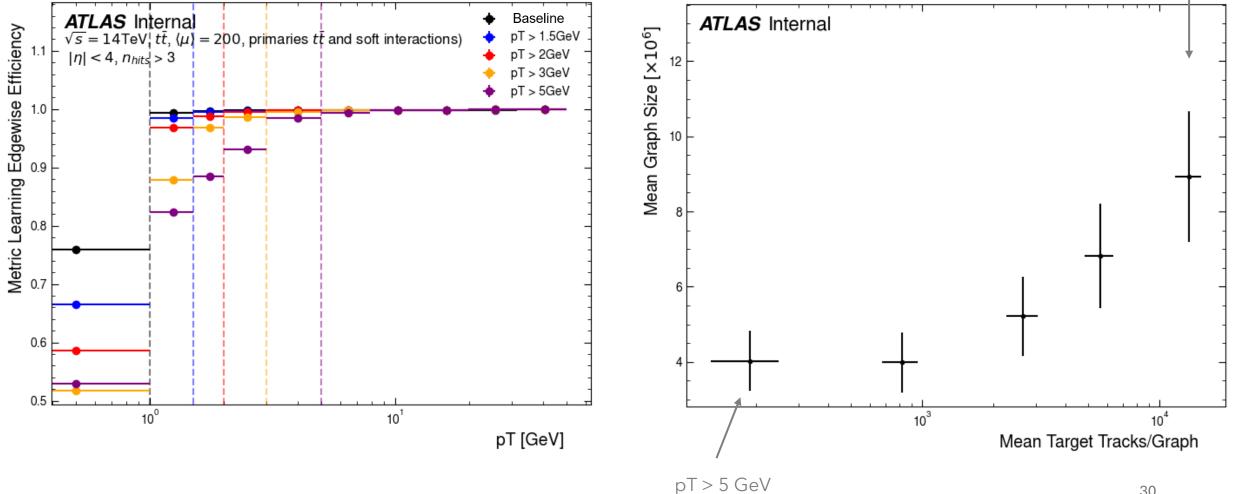


Stage One:

Graph Construction

Build graphs aimed at $p_T > [1, 1.5, 2, 3, 5]$ GeV

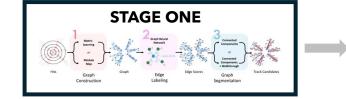
AIM: Maximising target purity whilst requiring 99.5% target efficiency

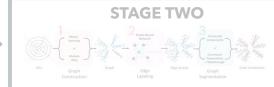


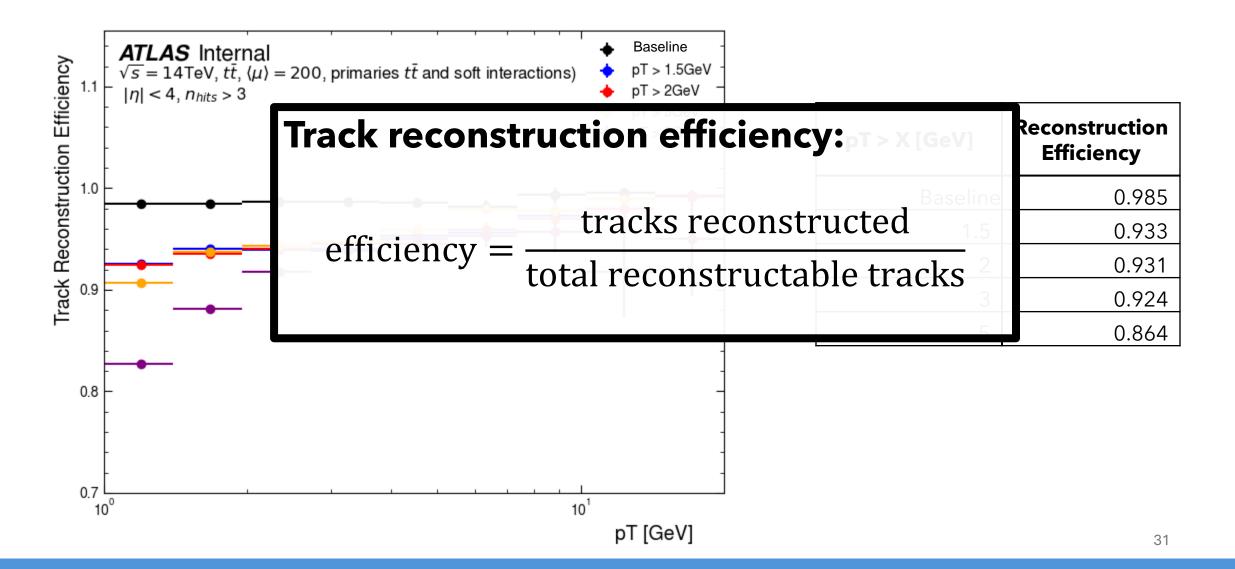
Baseline, pT > 1 GeV

30

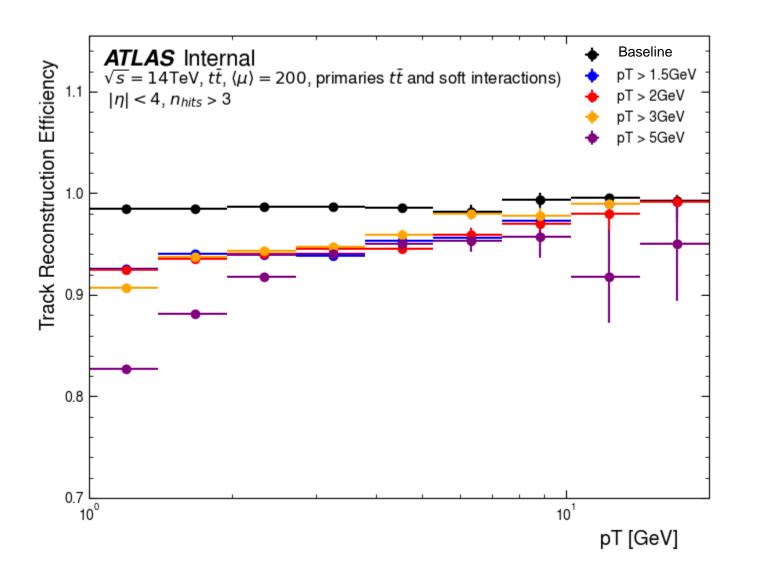
Stage One: Track Reconstruction



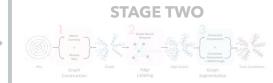




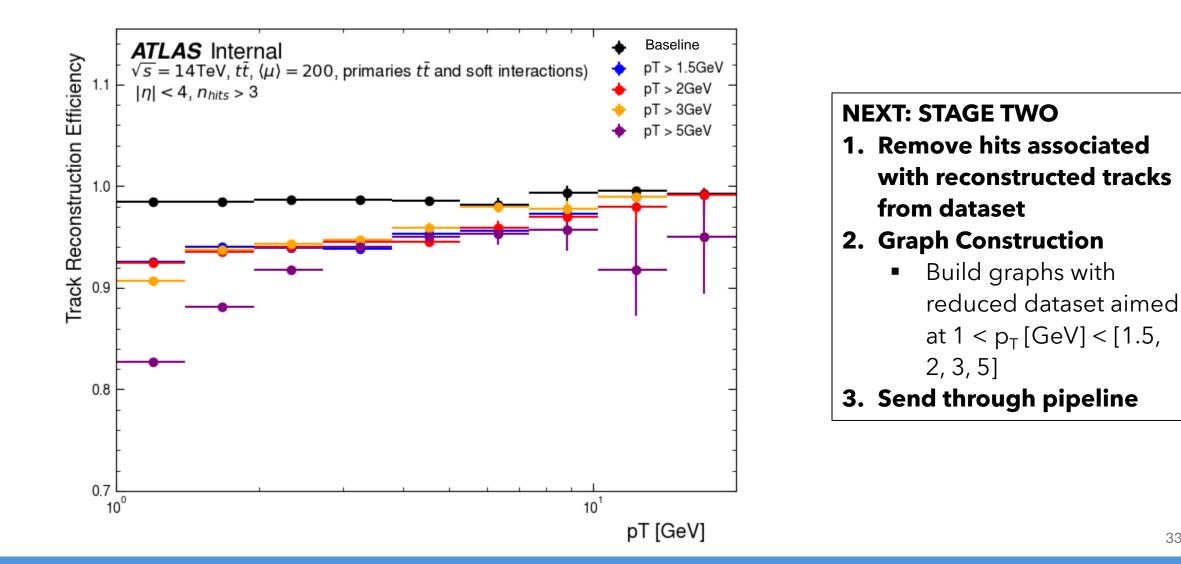
Stage One: Track Reconstruction

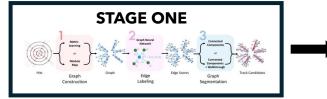


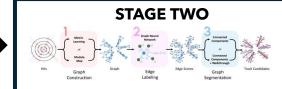
pT > X [GeV]	Reconstruction Efficiency
Baseline	0.985
1.5	0.933
2	0.931
3	0.924
5	0.864



Stage One: Track Reconstruction

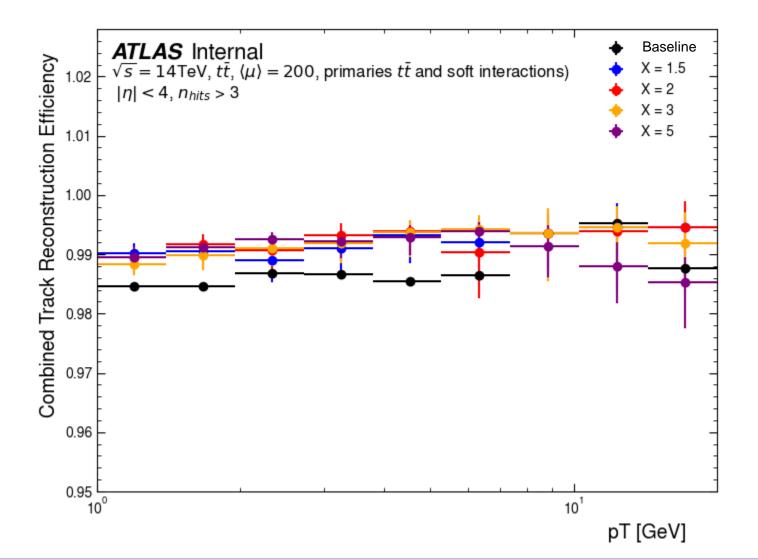




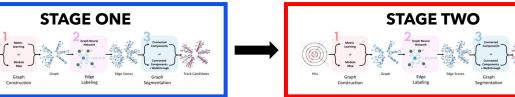


Combined results

of graphs pT > X GeV and 1 < pT [GeV] < X

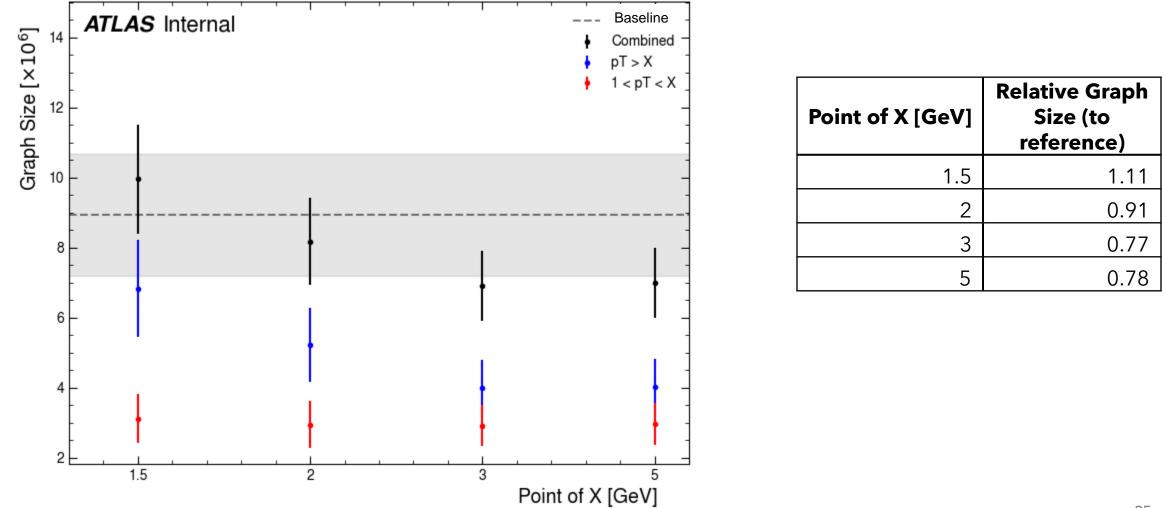


Point of X [GeV]	Combined Reconstruction Efficiency
Baseline	0.985
1.5	0.990
2	0.991
3	0.989
5	0.991



Combined results

of graphs pT > X GeV and 1 < pT [GeV] < X



Conclusions

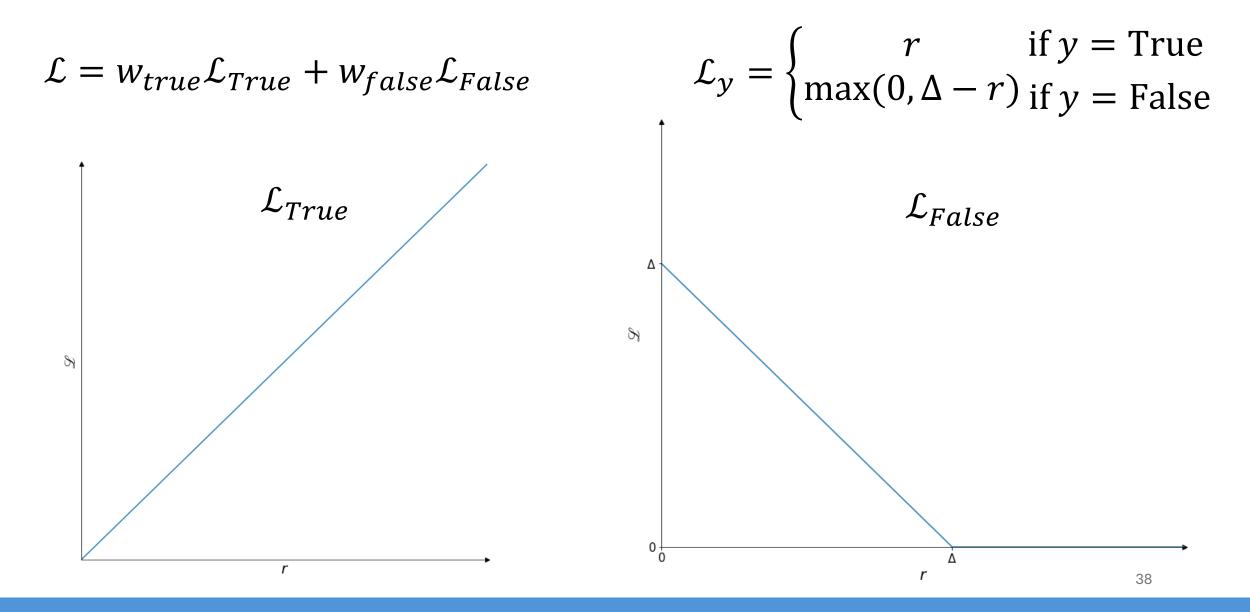
- Graph neural networks a promising avenue for track finding
- Achievement of 98.5% track efficiency as baseline room for improvement
- Reduction in graph size is possible by building pT specialised graphs
- What about throughput?
- Other physics-informed optimizations?

BACKUP

STAGE ONE

Graph Construction

The MLP is trained using a weighted hinge loss.



Graph segmentation: Connected components + Walkthrough

Charline Rougier at CTD 2022

Legend: Edge below threshold Edge above threshold Same color nodes = same particle nodes

Connected component algorithm, with loose edge score cut

The better GNN performance the more tracks are ready at this stage and the faster the reconstruction is

Walk-through algorithm, with tighter edge score cut

(Current graph segmentation mainly developed to complete the chain. Not yet optimized, e.g. could be combined with a Kalman Filter.) No further filtering: track candidate is built No further filtering: killed the track candidate is built or

- FPGA: AMD Alveo U250
- GPU: Nvidia V100