ReTrac(k)ing our Steps: Track Reconstruction
with Graph Neural Networks
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ATLAS Phase-ll Upgrade: TDAQ
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AIM OF TDAQ: to ensure optimal data-taking
conditions and select most interesting collision
events for study

LO Trigger: Processes muon and
calorimeter data at 40 MHz.
Accepts at 1 MHz.

Event Filter: Particle tracks reconstructed with
ITk data; full event reconstruction. Accepts at
10 KHz.
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Track Finding
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TRACK RECONSTRUCTION:
Label successive hits from the same particle as a ‘track’
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Track Finding
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— R&D on track reconstruction acceleration

Track reconstruction with graph neural networks



https://cds.cern.ch/record/2875779
https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf
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« Comparable efficiency and fake rates to CKF

* Scaling that is close to linear in event size
* As shown by Exa.TrkX arXiv:2103.06995

e Benefits from GPU acceleration



https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf
https://arxiv.org/abs/2103.06995
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-06/
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Hits Graph

1. GRAPH CONSTRUCTION

Assign hits as nodes; connect these
nodes with edges to allow
connecting nodes possibility of
belonging to the same particle



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/
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Metric Learning

* Embed hits into a latent space using
an MLP

e Connect hits within some radius in
latent space

GOAL:

 Build true edges (efficiency)
- Limit false edges (purity)
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real space

Metric Learning

* Embed hits into a latent space using
an MLP

e Connect hits within some radius in
latent space

GOAL: . o .o
* Build true edges (efficiency) ® o
- Limit false edges (purity) ° . ‘e latentspace
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real space

Metric Learning

* Embed hits into a latent space using
an MLP

e Connect hits within some radius in
latent space

GOAL: .. I >
* Build true edges (efficiency)
- Limit false edges (purity) ® o latentspace

11




.....

Metric Learning
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real space

* Embed hits into a latent space using
an MLP

e Connect hits within some radius in
latent space

GOAL: . o .o
* Build true edges (efficiency) *e
- Limit false edges (purity) . ®, ¢ latentspace




How?
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1.5 FILTER

Score each edge;
remove edges
below a score cut.
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Graph Edge Scores

2. EDGE CLASSIFICATION

Feed graph into a trained
interaction network that will assign
a score to each edge, quantifying
the probability connected nodes
belong to same particle.
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The Interaction Network:
Message Passing

Interaction

Input — —_— —_— Decoders — Edge
Network
graph scores
eometric patterns Transforms laten
Embeds graph Learns g icp anstorms atent
. . of beyond-nearest nodes features into
input features into using message passin edge score
latent space 9 gep 9 9
steps

One iteration:

1. Node features (spatial position) are
encoded

2. Encoded features concatenated and
encoded to create edge features

3. Edge features are aggregated to create
next round of encoded node features

®

On the k™ iteration

k+1 (P(UOJzeO +1)

k+1 _ k ..k .k
eo3+ = ¢(vg, V3, €p3)

v3




How?

Connected
Components
or
‘ Connected
0.03 : 0.90 0.94 ? C
bz omponents
" + Walkthrough
Edge Scores Track Candidates

3. GRAPH SEGMENTATION

Use an algorithm to connect
scored edges into track
candidates.
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Baseline

Dataset: MC event simulation

samples

« pp collisions at+/s = 14 TeV with
a tt pair in the final state

« Average 200 pp pileup per
bunch «

o Full ATI
based «

Target particles:
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Track efficiency:
0.985
Input graph size:
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Physics-Informed Graph Optimization

* High momentum and low
momentum tracks are easy to
differentiate

* Is it possible to train networks to
construct only high (or low)
momentum tracks?

* Would these specialised
networks build smaller graphs?
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Building only low p tracks - NO
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Building only high p- tracks - YES
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high p; tracks

low p; tracks

STAGE ONE
Build graphs aimed at
pr>1[1.5,2,3,5]GeV
Construct tracks
Remove hits associated with

constructed tracks

$

STAGE TWO
Build graphs aimed at
1 <p[GeV]<[1.5,2,3,5]
using reduced dataset
Construct tracks
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high p; tracks

low p;tracks

1. Build high p; edges
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high p; tracks
low p;tracks

2. Construct tracks
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high py tracks 3. Remove associated hits
low py tracks .

1

@ - @
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high p; tracks
low p; tracks
—_

1 4. Build remaining edges

@ - @
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high p; tracks
low p;tracks
S

5. Construct remaining

é @ tracks §
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STAGE ONE

Stage One: @113
Graph Construction
Build graphs aimed at py>[1, 1.5, 2, 3, 5] GeV
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Track Reconstruction
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Stage One:

Track Reconstruction

nnnnnnnnnnnn

. - R
N\ it W b
(@) = s N SN
N, 7 o
A wee ) TE N B
- Edge
Labeling

T T T T T T T T I .
~. | ATLAS Internal i 4 Baselne
e " Vs = 14TeV, tt, (u) = 200, primaries tt and soft interactions) # PT>1.5GeV 7
g Inl <4, Nhits > 3 & pT>2GeV -
= oT > 3GeV
g _ 4 pT>5GeV
C I -
= i _
E ML ° s N ¢ ~ J
-'g - & & & !
Q i i
U i 5 -
@ —— _,,__._=l= ,E ;

r —e— . L |
S 09F _
o O
l‘_,.E i —— |
—— :
08 _
0.7 L 1 L 1 1 ] ] i ]
10° 0
pT [GeV]

P> XiGev) | Regonsiructor
Baseline 0.985

1.5 0.933

2 0.931

3 0.924

S 0.864

32




STAGE ONE
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.y P e T p—— i
i\ “‘:ﬁ‘ }_ ’.11::_ o 0 R = 3y L
\_4\-.\;»],, / ,‘».:;.. N . TR - /7 N
=) { e = A I S 55 = 73 ]
° s O Py Tackcand
Combinedresults = |L_& i

of graphs pT > X GeVand 1 < pT[GeV] < X

> . ATLAS Internal . 4 Baseline
S oL Vs =14TeV, tt, {u) = 200, primaries tt and soft interactions) + X=15
% [ [Nl <4, npits > 3 4 X=2 1
Do + §f§ 3 Combined
- O0ir B 7 Point of X [GeV] | Reconstruction
g | Efficiency
% o ' | Baseline 0.985
S : e H i _.ﬁ.__._:
3 ool $ T — | 1.5 0.990
$ omo == 3 E ! - 2 0.991
ﬁ : & & — : .
= 0.98 - . 3 0.989
® 5 0.991
= i ]
-n B —
g 0.97 | _
(=]
D I .

0.96 | .

095L - . - e




STAGE TWO

.....

Combined results
of graphs pT > X GeVand 1 < pT[GeV] < X
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Conclusions

» Graph neural networks a promising avenue for track finding

* Achievement of 98.5% track efficiency as baseline - room for
Improvement

« Reduction in graph size is possible by building pT - specialised
graphs

* What about throughput?

» Other physics-informed optimizations?




BACKUP




Graph Construction

The MLP is trained using a weighted hinge loss.

r ity = True
L= WtrueLTrue T Wfalse['False Ly =

max(0,A — 1) ify = False

LTrue LFalse




Graph segmentation:
Connected components + Walkthrough  c..ic rougier o 2000

Legend:

_— Edge below threshold //‘ /". /. /./

_— Edge above threshold
Same color nodes = same particle nodes

Connected component algorithm, *
with loose edge score cut

No further filtering:
track candidate is built

v

The better GNN performance
the more tracks are ready at this stage
and the faster the reconstruction is

S )

Walk-through algorithm, *
with tighter edge score cut

No further filtering: killed
the track candidate is built :
I or {/ y x
(Current graph segmentation mainly developed to complete the chain. |
Mot yet optimized, e.g. could be combined with a Kalman Filter.)



https://indico.cern.ch/event/1103637/contributions/4821831/attachments/2453859/4205351/CTD_2022_CR_v2.pdf

* FPGA: AMD Alveo U250
* GPU: Nvidia V100
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