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ATLAS Phase-II Upgrade:   TDAQ

L0 Trigger: Processes muon and 

calorimeter data at 40 MHz. 

Accepts at 1 MHz.

 

Event Filter: Particle tracks reconstructed with 

ITk data; full event reconstruction. Accepts at 

10 KHz.

 

AIM OF TDAQ: to ensure optimal data-taking 

conditions and select most interesting collision 

events for study
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ATLAS Phase-II Upgrade:   TDAQ

AIM OF TDAQ: to ensure optimal data-taking 

conditions and select most interesting collision 

events for study

 

Provide tracks that allow for filtering down 
to 10 kHz of "interesting events’’ by the 

Event Filter
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Track Finding
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TRACK RECONSTRUCTION: 

Label successive hits from the same particle as a ‘track’

 



Track Finding

Track reconstruction with graph neural networks

https://cds.cern.ch/record/2875779

ATLAS TDAQ Tracking Amendment

• Combinatorial Kalman Filter (CKF)

• Traditional method

• High efficiency, low fake rate

• Scales worse than linear in event size

• ‘CPU intensive’

• ATLAS TDAQ Tracking Amendment

→ R&D on track reconstruction acceleration
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Track Finding

• Combinatorial Kalman Filter (CKF)
• Traditional method

• High efficiency, low fake rate

• Scales worse than linear in event size

• ‘CPU intensive’
• ATLAS TDAQ Tracking Amendment

• Graph-based machine learning 
• Comparable efficiency and fake rates to CKF

• Scaling that is close to linear in event size

• As shown by Exa.TrkX arXiv:2103.06995

• Benefits from GPU acceleration 

Results from CTD 2023
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How?

1.   GRAPH CONSTRUCTION

Assign hits as nodes; connect these 
nodes with edges to allow 
connecting nodes possibility of 
belonging to the same particle 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/
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Metric Learning

• Embed hits into a latent space using 
an MLP

• Connect hits within some radius in 
latent space

GOAL:
• Build true edges (efficiency)

• Limit false edges (purity)
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How?

1.5   FILTER

Score each edge; 
remove edges 
below a score cut. 
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How?

2.   EDGE CLASSIFICATION

Feed graph into a trained 
interaction network that will assign 
a score to each edge, quantifying 
the probability connected nodes 
belong to same particle. 
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The Interaction Network

Encoders Decoders
Interaction 

Network

Learns geometric 
patterns of beyond-
nearest nodes using 

message passing 
steps

Embeds graph input 
features into latent 

space

Transforms latent 
features into edge 

score

Input 
graph

Edge 
scores
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The Interaction Network:
Message Passing
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One iteration:

1. Node features (spatial position) are 
encoded

2. Encoded features concatenated and 
encoded to create edge features

3. Edge features are aggregated to create 
next round of encoded node features

𝑣1
𝑘

𝑣2
𝑘

𝑣3
𝑘

𝑒03
𝑘+1 = 𝜙(𝑣0

𝑘, 𝑣3
𝑘 , 𝑒03

𝑘 )

𝑒23
𝑘

𝑒13
𝑘

𝑣0
𝑘+1 = 𝜙(𝑣0

𝑘, Σ𝑒0𝑗
𝑘+1) 

Encoders Decoders
Interaction 

Network

Learns geometric patterns 
of beyond-nearest nodes 
using message passing 

steps

Embeds graph 
input features into 

latent space

Transforms latent 
features into 
edge score

Input 
graph

Edge 
scores

𝑂𝑛 𝑡ℎ𝑒 𝑘𝑡ℎ𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛



How?

3.    GRAPH SEGMENTATION

Use an algorithm to connect 
scored edges into track 
candidates. 
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Baseline
Dataset: MC event simulation 
samples
• 𝑝𝑝 collisions at 𝑠 = 14 TeV with 

a 𝑡𝑡 pair in the final state
• Average 200 𝑝𝑝 pileup per 

bunch crossing
• Full ATLAS detector simulation 

based on GEANT 4

Target particles:
𝑝𝑇 >  1 𝐺𝑒𝑉; 𝜂 < 4; 𝑛ℎ𝑖𝑡𝑠 > 3
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Track efficiency:

 0.985

Input graph size: 

~ 𝟗 × 𝟏𝟎𝟔 edges

=> 7500 edges / target track
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Track efficiency:

 0.985

Input graph size: 

~ 𝟗 × 𝟏𝟎𝟔 edges

=> 7500 edges / target track

Can we build smaller graphs whilst maintaining 
track efficiency?



Physics-Informed Graph Optimization 
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• High momentum and low 

momentum tracks are easy to 

differentiate 

• Is it possible to train networks to 

construct only high (or low) 

momentum tracks?

• Would these specialised 

networks build smaller graphs? 



Building only low pT tracks - NO

• Difficult to train a network 

to build low momentum 

edges and avoid building 

high momentum edges 

21
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Building only high pT tracks - YES

• It is possible to train a 

network to build high 

momentum edges whilst 

avoid building low 

momentum edges! 
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high efficiencylow efficiency
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high pT tracks

low pT tracks
STAGE ONE

• Build graphs aimed at             

pT > [1.5, 2, 3, 5] GeV

• Construct tracks

• Remove hits associated with 

constructed tracks

STAGE TWO

• Build graphs aimed at               

1 < pT [GeV] < [1.5, 2, 3, 5] 

using reduced dataset

• Construct tracks
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high pT tracks

low pT tracks

1. Build high pT edges
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high pT tracks

low pT tracks

2. Construct tracks
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high pT tracks

low pT tracks

3. Remove associated hits
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high pT tracks

low pT tracks

4. Build remaining edges
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high pT tracks

low pT tracks

5. Construct remaining 
tracks
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Stage One:
Graph Construction

Build graphs aimed at pT > [1, 1.5, 2, 3, 5] GeV

AIM: Maximising target purity whilst requiring 99.5% target efficiency
Baseline, pT > 1 GeV

pT > 5 GeV

STAGE ONE STAGE TWO
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Stage One:
Track Reconstruction

STAGE ONE STAGE TWO

pT > X [GeV]
Reconstruction 

Efficiency

Baseline 0.985 .

1.5 .   0.933 .

2 .   0.931 .

3 .   0.924 .

5 . 0.864 .

31

Baseline

Track reconstruction efficiency:

efficiency =
tracks reconstructed

total reconstructable tracks
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Stage One:
Track Reconstruction

STAGE ONE STAGE TWO

NEXT: STAGE TWO

1. Remove hits associated 

with reconstructed tracks 

from dataset

2. Graph Construction

▪ Build graphs with 

reduced dataset aimed 

at 1 < pT [GeV] < [1.5, 

2, 3, 5]

3. Send through pipeline

33
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COMBINED

Combined results 
of graphs pT > X GeV and 1 < pT [GeV] < X

Point of X [GeV]
Combined 

Reconstruction 
Efficiency

Baseline . 0.985 .

1.5 .   0.990 .

2 .   0.991 .

3 .   0.989 .

5 . 0.991 .

STAGE ONE STAGE TWO

34

Baseline



COMBINED

Point of X [GeV]
Relative Graph 

Size (to 
reference)

1.5 .   1.11 .

2 .   0.91 .

3 .   0.77 .

5 . 0.78 .

STAGE ONE STAGE TWO

Combined results 
of graphs pT > X GeV and 1 < pT [GeV] < X
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Baseline



Conclusions

• Graph neural networks a promising avenue for track finding

• Achievement of 98.5% track efficiency as baseline – room for 

improvement

• Reduction in graph size is possible by building pT - specialised 

graphs

• What about throughput?

• Other physics-informed optimizations?
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BACKUP
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The MLP is trained using a weighted hinge loss.

ℒ𝑦 = ቊ
𝑟

max(0, Δ − 𝑟)
if 𝑦 = True 

if 𝑦 = False
ℒ = 𝑤𝑡𝑟𝑢𝑒ℒ𝑇𝑟𝑢𝑒 + 𝑤𝑓𝑎𝑙𝑠𝑒ℒ𝐹𝑎𝑙𝑠𝑒

ℒ𝑇𝑟𝑢𝑒 ℒ𝐹𝑎𝑙𝑠𝑒
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Graph segmentation:
Connected components + Walkthrough Charline Rougier at CTD 2022
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https://indico.cern.ch/event/1103637/contributions/4821831/attachments/2453859/4205351/CTD_2022_CR_v2.pdf


• FPGA: AMD Alveo U250

• GPU: Nvidia V100

40
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