
Everything
Everywhere
“Parallel”
at once

S A C H I N G U P T A

P H Y S I K A L I S C H E S I N S T I T U T

T R I F E L S A N N U A L R E T R E A T

Overview

• Part 1 : Why “everything everywhere” ?

• Part 2 : Why “parallel” at once ?

• Part 3 : Result

1 9 J U L Y 2 0 2 4 2

Everything,

Everywhere

1 9 J U L Y 2 0 2 4 3

Track Reconstruction

• Goal : Getting the properties of charged particle from the raw detector

measurement.

• Done in two stages :

• Track finding : (Grouping of hits)

• Track fitting : (Fitting track parameters)

Detector layers with hits

1 9 J U L Y 2 0 2 4 4

What is Track Finding ?

September 2022 February 2023

1 9 J U L Y 2 0 2 4 5

Track finding : Grouping leaves

• From the pile of leaves, form sets.

• Each set can be associated with a branch

 symbolizing a particle trajectory.

1 9 J U L Y 2 0 2 4 6

Track finding

• Track Finding is the pattern recognition problem.

• Forming set of hits such that each set corresponds to track candidate.

Track
Finding

1 9 J U L Y 2 0 2 4 7

Track fitting

• From measurement to parameters

• Kinematic properties of a particle tracks are

 obtained after fitting.

• Eg: Describing trajectory with helix.

1 9 J U L Y 2 0 2 4 8

Why Everything, Everywhere ?

• Both steps consume substantial amount of computing resources.

• Computationally intensive task in high multiplicity environment.

1 9 J U L Y 2 0 2 4 9

“Parallel’’

 At once

1 9 J U L Y 2 0 2 4 1 0

Cellular Automata

• Dynamical system where space and time is both discretized.

• Each space site is called “Cell” that can either take integer or binary values.

• The evolution of each cell depends on its local neighbour cell values. The rule is

universal.

• In one time step, all cells are updated simultaneously.

1 9 J U L Y 2 0 2 4 1 1

Example Rule 30 (1 D Grid)

Ti
m

e
 S

te
p
s

https://mathworld.wolfram.com/Rule30.h
tml

1 9 J U L Y 2 0 2 4 1 2

Takeaway

• CA are local systems and gives full freedom for deciding

• Information to be embedded on a cell (universal)

• Neighbour formation

• Local law for cell evolution

• Since all cells in a grid update their values simultaneously,

 they can be implemented on GPUs (CAs are parallelizable)

Image generated by MS copilot

1 9 J U L Y 2 0 2 4 1 3

Implementation of CA for track finding

Define
“cells”

Construct
Neighbours CA evolution

Track
Building and

selection

1 4

Single Hit as a Cell

• Example – 4 layer detector , one particle track with one noisy hit (B =0)

• Cells – Hits

• Neighbour – all Hits in previous layer – (fully connected graph)

• No neighbour within the layer

Defining cells
Neighbour
formation

L1 L2 L3 L4

1 9 J U L Y 2 0 2 4 1 5

CA evolution Rules

• Initialize each cell with value = 1

• At each iteration –

• each cell looks at its left neighbour (if any)

• Find the max(neighbour values)

• New value = max(neighbour values) +1 This ensures the longer tracks

are preferred

t = 0

t = 1 t = 2 t = 3

Evolution is stopped
when CA grid values
remains unchanged

1 9 J U L Y 2 0 2 4
1 6

Track Building (Depth First search)

• Track building starts with the final configuration

 of CA.

• Our aim was to construct track with four hits so

 we start with the layer 4 cells.

• In this case two tracks are possible –

• Not only that, but cell’s value also

 represents the position of each cell

 in a track

L1 L2 L3 L4

1 9 J U L Y 2 0 2 4 1 7

Track Selection

• 𝜒2 cut can be used to further select the track

• 𝜒2 is calculated for each track and the best value is selected.

𝜒2 < 𝜒0
2

1 9 J U L Y 2 0 2 4 1 8

Triplet as a Cell

• In high track multiplicity environment (≈ 105 hits), using single hit as a cell will

become highly computationally and memory intensive.

• Instead higher level information in a cell should be embedded on “cell” i.e. Triplet

• Many fake combinations can be neglected before CA evolution.

• Since minimum three points are required to calculated the 𝑝𝑇 of a track, thus triplets

are well suited for our approach.

1 9 J U L Y 2 0 2 4 1 9

Visualization

1 9 J U L Y 2 0 2 4 2 0

8 detector layers

Forming track by connecting Hit

Visualization

1 9 J U L Y 2 0 2 4 2 1

8 detector layers

Forming track by connecting Triplet

Implementation of CA for track finding

Building

Triplets

Construct

Neighbours
CA evolution

Track

Building and

selection

Two consecutive
triplets having
two common hits

1 9 J U L Y 2 0 2 4 2 2

• Simplified detector geometry, adapted from early ATLAS ITk designs

• Pile – up 200 conditions like @ HL-LHC

Building Triplets with TrackML Dataset

Barrel region of the TrackML Dataset

1 9 J U L Y 2 0 2 4 2 3

Aim :
Finding

longest track
in barrel
region

Roadmap for Building Triplet

Dataset of barrel region
including noise

Doublet Formation (Pair
of two hits in consecutive
layers)

Triplet Formation (formed
from two doublets
sharing one hit)

1 9 J U L Y 2 0 2 4 2 4

Doublet cut : 𝑧0 search window

Longitudinal plane

2𝑧0

nth

n+1 layer

Hit in
consider

ation

-𝑧0 𝑧0

Form all
doublets within

this window

1 9 J U L Y 2 0 2 4 2 5

𝑑𝜙 search window

• Beamline constrained in transverse plane.

• Target Particles p𝑇 > 1 GeV.

• Two circle can be formed that passes through

 hit in consideration and (0,0).

Transverse Plane(x-y)

(0,0)

𝑝𝑇𝑐𝑢𝑡(GeV) = 0.3 B r (m)

• 𝜙 : angle made by hit (blue) with the x axis
• 𝜙 + 𝑑𝜙 : Green circle
• 𝜙 − 𝑑𝜙 : Orange circle

1 9 J U L Y 2 0 2 4 2 6

Triplets Cuts

𝜃2

𝜃1

𝑑𝜃

Transverse plane
• No bending in

Longitudinal plane

Polar angle difference
Curvature Difference 𝒅𝜿

1 9 J U L Y 2 0 2 4 2 7

Layer wise cuts

• Three quantities(𝑧0, 𝑑𝜃, 𝑑𝜅) are calculated for truth segments for each layer.

• In all three cases gaussian is fitted for each layer data and the selection window

is calculated – [𝜇 − 𝑛𝜎, 𝜇 + 𝑛𝜎]

1 9 J U L Y 2 0 2 4 2 8

Performance metric

• Efficiency =
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

•
𝐺𝑟𝑒𝑒𝑛 (𝑅𝑆)

#𝐺𝑟𝑒𝑒𝑛 (𝑇𝑆)

• Purity =
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

•
𝐺𝑟𝑒𝑒𝑛 (𝑅𝑆)

#𝐺𝑟𝑒𝑒𝑛 𝑅𝑆 +#𝐵𝑙𝑢𝑒(𝑅𝑆)

1 9 J U L Y 2 0 2 4 2 9

Reconstructed Space

Truth Space

Triplet Metrics

1 9 J U L Y 2 0 2 4 3 0

Fitting Triplets

• Local Triplet fit : Implemented and 𝝌𝟐 is calculated for each triplet

• Chi square cut is applied before CA evolution

1 9 J U L Y 2 0 2 4 3 1

The magic of Triplet Fit

1 9 J U L Y 2 0 2 4 3 2

Final Track finding performance

• Reconstructed signal if 50 % or more hits belong to a signal track.

1 9 J U L Y 2 0 2 4 3 3

Summary and outlook

• Physics performance of Track finding and track fitting algorithm that is fully

parallelizable for High multiplicity environment.

• The final efficiency above 3 sigma stays above 94 % and purity stays around

 90 % for all sigmas

• Currently optimizing algorithm for missing tracks.

• Future aspects : GPU implementation of the entire pipeline

1 9 J U L Y 2 0 2 4 3 4

Thank you for your attention

1 9 J U L Y 2 0 2 4 3 5

The ideal reasoner
would, when he had
once been shown a
single fact in all its
bearings, deduce from
it not only all the
chain of events which
led up to it but also all
the results which
would follow from it.

The Five Orange Pips, The Adventure of Sherlock Holmes

• Backup

1 9 J U L Y 2 0 2 4 3 6

Box and Whiskers Plot

• Represents where the most data is situated at .

• Spread of the data without looking at actual distribution.

• Helps spot outliers in the data.

• Box contains 50 % of the data, outliers lie outside of the whiskers .

Doublet eff & purity

1 9 J U L Y 2 0 2 4 3 8

Track Building : Depth First search

1 9 J U L Y 2 0 2 4 3 9

	Slide 1: Everything Everywhere “Parallel” at once
	Slide 2: Overview
	Slide 3
	Slide 4: Track Reconstruction
	Slide 5: What is Track Finding ?
	Slide 6: Track finding : Grouping leaves
	Slide 7: Track finding
	Slide 8: Track fitting
	Slide 9: Why Everything, Everywhere ?
	Slide 10
	Slide 11: Cellular Automata
	Slide 12: Example Rule 30 (1 D Grid)
	Slide 13: Takeaway
	Slide 14: Implementation of CA for track finding
	Slide 15: Single Hit as a Cell
	Slide 16: CA evolution Rules
	Slide 17: Track Building (Depth First search)
	Slide 18: Track Selection
	Slide 19: Triplet as a Cell
	Slide 20: Visualization
	Slide 21: Visualization
	Slide 22: Implementation of CA for track finding
	Slide 23: Building Triplets with TrackML Dataset
	Slide 24: Roadmap for Building Triplet
	Slide 25: Doublet cut : z sub 0 search window
	Slide 26: d phi search window
	Slide 27: Triplets Cuts
	Slide 28: Layer wise cuts
	Slide 29: Performance metric
	Slide 30: Triplet Metrics
	Slide 31: Fitting Triplets
	Slide 32: The magic of Triplet Fit
	Slide 33: Final Track finding performance
	Slide 34: Summary and outlook
	Slide 35: Thank you for your attention
	Slide 36
	Slide 37: Box and Whiskers Plot
	Slide 38: Doublet eff & purity
	Slide 39: Track Building : Depth First search

