

SHiP backgrounds and simulation

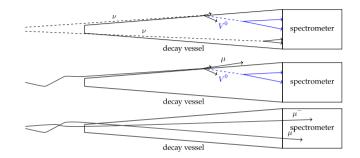
Oliver Lantwin

[oliver.lantwin@cern.ch]

2024-04-11

Some numbers to keep in mind

	SHiP
PoT/spill	4×10^{13}
E/GeV	400
spill length/s	1s
Target material	TZM/W
Distance to Target/m	35
Target Length/ λ	12
Beam power during spill/MW	2.3


Some very similar for ProtoDUNE, but not all

O. Lantwin (INFN Napoli)

Background overview

- Very minimal selection common to all signal channels
- Background tagging being optimised right now to improve signal efficiency while mainting background rejection

	v DIS	μ DIS	μ Comb
Expected events	< 0.3	$< 10^{-2}$	2.1×10^{-3}

- 1. Target simulation (performed in 2015 and 2018, takes several months)
 - > Save neutrinos, and muons passing the hadron absorber with their history
 - > Pythia8 for initial collisions, Pythia6 for charm and beauty cascade [SHiP-NOTE-2015-009]
 - > Transported by Geant4 (cross-check performed with with FLUKA [CERN-SHiP-ANA-2019-005])
 - > Validated in dedicated experiment in H4 in 2018 [CERN-SHiP-NOTE-2019-003; Eur.Phys.J.C 80 (2020) 3, 284]
 - $ightarrow 10^{11}$ PoT simulated, comparable to collected PoT in 2018
- 2. Specialised simulations (every significant change, takes a few weeks)
 - 2.1 Muon background (Geant4)
 - > Muon DIS (Geant4 -> Pythia6 -> Geant4)
 - > Muon combinatorial (Geant4, optionally generate more muons via GAN)
 - 2.2 Neutrino background (Genie -> Geant4)

- ightarrow In the $12~\lambda$ SHiP target, reinteractions of particles are non-negligible
 - ightarrow Increases signal yield (imes 2.3 for D, imes 1.7 for B)
 - > Reduces neutrino interactions due to reinteractions of pions and kaons before leptonic decay
- $\,\,$ > To simulate the cascade, use Pythia 6 in a recursive fashion *
- Good agreement with muon flux measurement, dedicated measurement for charm cascade-production planned

^{*}Pythia 8 recently added cascade, will check whether we can use it this summer

- 1. Start with primary proton and add it to the beam-particle stack
- 2. While there is a particle on the stack:

2.1 If $\chi_{\rm Norm} < {\rm Uniform}(0,1)$ $^{\rm +}$

- > Configure Pythia for charm(beauty) production and produce an event
- > Save stable charm(beauty) hadrons
- 2.2 Configure Pythia with all processes and produce an event
- 2.3 Select $p,\,n,\,\pi^{\pm},\,K^{\pm}$ and $K_{\rm S,L}$ and add them to the stack
- 2.4 Remove the current beam particle from the stack
- 3. Return to 1., if stack is empty and more events are needed.

[†]where $\chi_{
m Norm}$ is obtained from xN collisions simulated in Pythia

- > Target simulation for high-intensity beam-dumps is very time consuming!
- > Muon backgrounds probably mostly negligible in your case
- > Cascade likely important for you signal?
- > Happy to discuss further, our code is open source and available for use and reference