Background simulation for ProtoDUNE

Salvador Urrea (Salvador.Urrea@ific.uv.es)

In collaboration with Justo Martín-Albo, Josu Hernández-García

ProtoDUNE-BSM meeting

April 11, 2024

Gen-T CIDEGENT/2018/019

Experimental set-up: T2 target

P	T2 production yield $(1/PoT)$	channel	$BR(P \rightarrow channel)$	ν_{α} crossing ND (1/PoT)	
K_S^0	1	$\pi^- e^+ \nu_e$	$7.04 imes 10^{-4}$	$3.90 imes 10^{-6}$	
	2.3×10^{-1}	$\pi^- e^+ \nu_e$	40.55%	4.44×10^{-5}	
Γ_L	1	$\pi^-\mu^+ u_\mu$	27.04%	$2.94 imes 10^{-5}$	
D^+	3.4×10^{-4}	$e^+\nu_e$	$9.49 imes 10^{-9}$	4.78×10^{-14}	
		$\overline{K^0}e^+\overline{\nu_e}$	8.72%	4.41×10^{-7}	
		$\mu^+ \nu_{\mu}$	3.74×10^{-4}	1.92×10^{-9}	
		$\overline{K^0}\mu^+\overline{\nu_{\mu}}$	8.76%	4.48×10^{-7}	
		$\tau^+ \nu_{\tau}$	1.20×10^{-3}	6.09×10^{-9}	
D_s^+	9.8×10^{-5}	$e^+\nu_e$	1.25×10^{-7}	1.48×10^{-13}	
		$\mu^+ \nu_\mu$	5.43×10^{-3}	6.54×10^{-9}	
		$\tau^+ \nu_{\tau}$	5.32%	6.33×10^{-8}	
τ^+ τ^-	5.2×10^{-6}	$\overline{\nu_{\tau}}e^{+}\nu_{e}$	17.82%	$1.13 imes 10^{-8}$	
		$\overline{\nu_{ au}}\mu^+ u_{\mu}$	17.39%	1.11×10^{-8}	
		$\overline{\nu_{\alpha}}\ell_{\alpha}^{-}\nu_{\tau}$	35.21%	2.22×10^{-8}	
		$\pi^0\pi^- u_{ au}$	25.49%	1.60×10^{-8}	
		$\pi^- \nu_{ au}$	10.82%	6.80×10^{-9}	

Salvador Urrea (IFIC)

Table 1. **PRELIMINARY**. List of parents P produced in the primary target T2, and decaying into SM neutrinos of flavor α . The numbers are normalized per PoT.

Neutrinos entering the detector

HNL

HNL: Production

$$\mathcal{L} \supset -\frac{m_W}{v} \bar{N} U^*_{\alpha 4} \gamma^{\mu} l_{L\alpha} W^+_{\mu} - \frac{m_Z}{\sqrt{2}v} \bar{N} U^*_{\alpha 4} \gamma^{\mu} \nu_{L\alpha} Z_{\mu}$$

We consider the simplified phenomenological benchmarks of one HNL mixing with one SM neutrino of a given flavour

Parent	2-body decay	3-body decay	P	arent	2-body decay	3-body d
$\pi^+ \rightarrow$	e^+N_4		I	$D^+ \rightarrow$	e^+N_4	$e^+\overline{K^0}$
	$\mu^+ N_4$				$\mu^+ N_4$	$\mu^+\overline{K^0}$
$K^+ \rightarrow$	e^+N_4	$\pi^0 e^+ N_4$			$\tau^+ N_4$	
	$\mu^+ N_4$	$\pi^0 \mu^+ N_4$	I	$D_s^+ \rightarrow$	e^+N_4	
$\tau^- \rightarrow$	$\pi^- N_4$	$e^-\overline{\nu}N_4$			$\mu^+ N_4$	
	$ ho^- N_4$	$\mu^-\overline{\nu}N_4$			$\tau^+ N_4$	

(normalised per PoT)

D $4.8 \cdot 10^{-4}$

Backgrounds

$\pi^{\pm}\mu^{\mp}$ or $\mu^{\pm}\mu^{\mp}$

We have 1278 background events with the following cuts:

- We keep events with only two μ -like (π^{\pm} , μ^{\pm}) particles, above an energy threshold of 30 MeV.
- We reject events with other detectable particles in the final state.

We can reduce the events to 15 events with the following kinematical cuts:

- $p_T < 0.35 \text{ GeV}.$
- $\theta_{\mu\pi} < 0.18$ rad.

These 15 events of background are $\mu^{\pm}\pi^{\mp}$, for the channel $\mu^{+}\mu^{-}$, we could reduce this background further by noting that pions are more likely to interact in the TPC, producing noticeable differences in their tracks with respect to the muons.

 $e^{\pm}\mu^{\mp}$ or $e^{\pm}\pi^{\mp}$

We have 1982 background events with the following cuts:

- We keep events with only one μ -like (π^{\pm} , μ^{\pm}) particle and one (e^{\pm}), above an energy threshold of 30 MeV.
- We reject events with other detectable particles in the final state.

We can reduce the events to 24 events with the following kinematical cuts:

- $p_T < 0.35 \text{ GeV}.$
- $\theta_{e\mu} < 0.180$ rad.

These 24 events of background are $e^{\pm}\pi^{\mp}$, for the channel $e^{-}\mu^{+}$, we could reduce this background further by noting that pions are more likely to interact in the TPC, producing noticeable differences in their tracks with respect to the muons.

 π^0 or e^+e^-

We have **721** background events with one single π^0 in the final state. These π^0 will promptly decay into 2 photons and it will be a background for e^+e^- channels when only one of the γ convert into the TPC. This occurs for around 1% of the events leaving a background of \sim 7 background events for e^+e^- . Further kinematical cuts need to be explored.

Take home message

• Our preliminary studies tell us that some of the golden channels for the HNL will be close to background free.

What is next?

- We need to compute the background using the Geant4 simulation for the neutrino flux.
- Explore other sources of background like cosmics
- Compute the background for other types of searches, like Milicharged particles where the signal comes from scattering.

Thank you

Back-up

HNL: Decays into visible channels

New Physics: Decay in flight inside the detector

Detector(NP02) Liquid Argon TPC

 $N_{dec}^{M} = N_{PoT} Y_{M} BR(M \to \Psi) \int dS \int dE_{\Psi} \mathcal{P} \left(c\tau_{\Psi} / m_{\Psi}, E_{\Psi}, \Omega_{\Psi} \right) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$

 $N_{det} = N^M_{dec} \cdot BR(\Psi \rightarrow \text{ visible }) \cdot \epsilon_{det}$

HNL: Fluxes

HNL intersecting the detector

- Wide HNL beam
- Small changes in the geometry will not significantly change the results
- Any of the two ProtoDUNE detectors can be used

• Quite energetic HNL beam

HNL: Decays into visible channels (combination)

We consider the following channels $N \to \nu ee, \nu \mu \mu, \nu e \mu, e \pi, \mu \pi$ and $\nu \pi^0$

