

HCI analysis status

AEGIS Collaboration meeting May 2024 Fredrik PG

Highly Charged Ions (HCIs)

- HCIs are atoms stripped of most or all their electrons.
- >Exhibit extreme electromagnetic properties:
 - Ideal for test of strong field QED
 - Enhanced sensitivity to nuclear structure (QCD)
- ➢ Radioactive HCIs have supressed decay:
- Electron capture no longer possible (Weak interaction studies)

Electroweak Decay Studies of Highly Charged Radioactive lons with TITAN at TRIUMF

by
 Kyle G. Leach ^{1,*} □ 0,
 Iris Dillmann ²,
 Renee Klawitter ^{2,3},
 Erich Leistenschneider ^{2,4} 0,
 Annika Lennarz ² 0,
 Thomas Brunner ^{2,5} 0,
 Dieter Frekers ⁶,
 Corina Andreoiu ⁷,
 Anna A. Kwiatkowski ² and
 Jens Dilling ²

RESEARCH BRIEFINGS 04 October 2023

Testing the limits of the standard model of particle physics with a heavy, highly charged ion

PAPER • OPEN ACCESS

Perspectives on testing fundamental physics with highly charged ions in Penning traps

K Blaum¹, S Eliseev^{2,1}, and S Sturm¹ Published 6 November 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd <u>Quantum Science and Technology, Volume 6, Number 1</u> <u>Focus on Quantum Sensors for New-Physics Discoveries</u> Citation K Blaum *et al* 2021 *Quantum Sci. Technol.* 6 014002

Article | Published: 29 January 2020

Coherent laser spectroscopy of highly charged ions using quantum logic

P. Micke , T. Leopold, S. A. King, E. Benkler, L. J. Spieß, L. Schmöger, M. Schwarz, J. R. Crespo López-Urrutia & P. O. Schmidt

<u>Nature</u> 578, 60–65 (2020) Cite this article

Traditional HCI formation at radioactive beam facilities:

High energy beam through stripper foil:

Electron beam ionization:

Fig. 2: Principle of operation of an EBIS

Radioactive HCI formation using antiprotons?

Synthesis of cold and trappable fully stripped highly charged ions via antiproton-induced nuclear fragmentation in traps

G. Kornakov, G. Cerchiari, J. Zieliński, L. Lappo, G. Sadowski, and M. Doser Phys. Rev. C **107**, 034314 – Published 23 March 2023

Overview of the fragment capture procedure

Overview of HCI campaigns in 2023

• Air leak campaign: (3 weeks)

- First postive ion signal.
- Techniques developed for manipulating trapped ions.
- Barrier scan, Multi-step, MR-TOF procedure.
- Identifying the energy of the TOF components.

Antiproton and electron calibration:

- Calibration of TOF spectra.
- Confirming linearity with mass and energy.

• Nitrogen campaign: (36h):

- Clean nitrogen environment.
- Confirming HCI formation from nitrogen.

Sample data during air leak campaign

Time-of-flight calibration using Pbars

Peak at m/q=2 Fully stripped nitrogen identified?

Evolution of formation

Low energy antiproton interactions

What could result in the formation of m/q=2 from nitrogen?

Collissional ionization with antiprotons? 3000 eV is required to form N⁷⁺ from the N₂ molecule

Could electrons accelerated by HV electrodes strip nitrogen?

Simulation by Bharat using CST in progress...

Nuclear fragments? m/q= - N₂ Fitted function 0.014 $\bar{P} + \rho$ 0.012 **P** calibration ≥ ^{0.010} ToF distribution of fragments from N14 with Q=+Z Amplitude(800'0 800'0 0.7 T = 50000 K0.004 0.002 0.6 0.000 15 20 25 Ν 0.5 N_2 Fitted function P+e⁻ 0.4 count P calibration 0.3 0.2 **Jakub simulations** 0.1 0.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 15 20 25 10 0 TOF(us) ToF [us]

Could fully stripped fragments be formed from impact with high energy recoil fragments?

Proof-of-Principle paper:

Formation of HCIs in a trap with antiprotons

- Introducing possibilities of trapping nuclear fragments from annihilation.
- Presenting mechanism for trapping HCIs formed from Pbar annihilation with $\rm N_2$ gas.
- Identification of TOF spectra.
- Discussing origins of formation (Simulations ongoing).
- Concluding with most likely origin. Opening door to community to investigate further.
- Suggested Journals: PRL, Scientific reports..

Technical paper:

- Detailed technical report.
- Nested trap procedure, Ion manipulation, MR-TOF procedure, future improvements.. **analysis ongoing..**

Outlook

Gas injection valve installed

Controlled injection of gas into AEGIS

Suggested measurements for 2024

Antiprotonic atom spectroscopy at AEGIS

- Continuing LEAR era measurments: Plenty of physics cases!
- Teaching us the procedure for antiprotonic atom x-ray spectroscopy.

Argon run 2023

First x-ray spectroscopy at AEGIS

<u>**Physics case:</u>** The spin-flip-induced quadrupole resonance effect in odd-A exotic atoms</u>

TABLE I. Examples of stable odd-*A* antiprotonic atoms where the spin-flip-induced quadrupole resonance is expected. clear transition energies were acquired from [42] and the antiproton transition energies were calculated from the Ham \mathcal{H}_r . In parenthesis, we indicate tentatively assigned nuclear spins of the excited states. The calculated coupling matrix $\langle fin|\mathcal{H}_Q|ini\rangle/\mathcal{Q}_0$ is presented for each scenario. Follow text for more details.

isotope	Ζ	N	nuclear spin		ΔE_N	$\Delta E_{\bar{P}}$	n		$\langle { t fin} {\cal H}_Q { t ini} angle / {\cal Q}_0$	
			ground	excited	(keV)	(keV)	initial	final	$(eV b^{-1})$	
			NUCLEUS			ANTIPROTON				
¹⁰¹ Ru	44 49	57 62	5/2 1/2	(7/2)	938.65	939.40	7	5	159	
¹²³ Sb ¹⁶⁵ Ho	51 67	72 98	7/2 7/2	(9/2) (9/2)	$1260.80 \\ 2178.00$	$\frac{1264.81}{2189.96}$	7 7	5 5	258 584	
¹⁶⁹ Tm ¹⁸³ W ²⁰³ Tl	69 74 81	100 109 122	1/2 1/2 1/2	(3/2) (3/2) (3/2)	2312.2 2667.8 1988.88	$2323.38 \\ 2667.47 \\ 1987.73$	7 7 8	5 5 6	275 339 159	

New lasers for AEGIS

- <u>Goal</u>: Laser triggered formation of antiprotonic atoms in AEGIS. (First case: lodine)
- Broad range (Versatility)
- High intensity (Non-resonant and weak transitions)
- Pulsed
- Resolution? Spectroscopy?
- OPO systems from EKSPLA..

no need for physical intervention

Summary of outlook:

- Continued development of trapping procedure and identification of HCI fragments from antiproton-atom interaction using gas injection (the dirty method).
- First x-ray spectroscopy of antiprotonic atoms at AEGIS (initially on target). Characterizing background for spectroscopy inside the trap. Many 'simple' physics cases.
- (Triggered formation of antiprotonic atoms through target ablation near trapped cold antiprotons?)
- Purchase of laser systems for photodetachment and Rydberg excititatation: Triggered formation of antiprotonic atoms with cotrapped anions.

Goal: Laser triggered formation of antiprotonic atoms (laser/x-ray/auger spectroscopy) and trapping and cooling of resulting HCI fragments.

Quasi-periodic Pbar annihilation?

Floating electrode in 5T trap?

Annihilation peak

Time

Noise filtering

Pbar trapping voltage vs MCP signal

Fast TOF component?

Isolating peak with 250 ns gate:

Barrier scan with 10 V floor voltage

TOF vs Barrier height

Isolating slow peak with 160 V Barrier

Floor voltage scan with release from MCP side

Ion time changes the 7+ population

The other peaks do not change significantly with time

Table 2: Ideal production conditions for ions of different isoelectronic sequences. Given are the ionization factor $j_e \tau$ (e⁻ cm⁻²), the optimal electron beam energy (keV) and the required ionization time (ms or s) for an assumed ionization factor of $j_e \tau = 3 \times 10^{22}$ e⁻ cm⁻².

Sequence	Neon	Argon	Krypton	Xenon	Gold	Uranium
	Z = 10	Z = 18	Z = 36	Z = 54	Z = 79	Z = 92
Atom	Ne^{10+}	Ar^{18+}	Kr ³⁶⁺	Xe ⁵⁴⁺	Au ⁷⁹⁺	U^{92+}
fully	$2 imes 10^{21}$	$2 imes 10^{21}$	$3 imes 10^{22}$	$2 imes 10^{23}$	$6 imes 10^{23}$	$2 imes 10^{24+}$
ionized	3	9	40	80	180	300
	7 ms	67 ms	1 s	7 s	20 s	67 s

