

Ion source construction: status update

Łukasz Kłosowski

UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU

Nicolaus Copernicus University in Toruń

AEgIS Collaboration meeting Toruń, 08.05.2024

A brief summary of the technique used

• Electron dissociative attachment inside a multi-segment linear Paul trap

$$I_{2} + e \rightarrow I + I^{-}$$
$$I_{2} + e \rightarrow I^{+} + I^{-} + e$$
$$CHI_{3} + e \rightarrow CHI_{2} + I$$

- lodine:
 - Mass 127 a.m.u. (only one natural isotope)
 - Electron affinity 3.06 eV
 - The heaviest 2-atomic, homonuclear molecule
 - Solid at room temperature

FIG. 14. The resonance capture peak for the formation of I^- from iodine by electron impact.

Design of the device

The linear Paul trap

Temporary voltage supply system

Molecular beam source

Thermal shielding for the reservoir designed and built by Adam Linek (the driver not presented in the picture)

Silver mesh absorber of iodine

Anion detector (spiraltron)

Deleting in detection officiance comme

MHV – SHV compatibility issue (solved!)

Electron gun

Expected cross sections and final kinetic energies

Cooling of the trapped anions

- We need temperatures below 1 eV
- At the room temperature (molecular beam) it is about 0.025 eV
- Two cooling schemes are being considered:
 - RLC resonance resistive cooling
 - Manipulating the depths of both trapping centres (see the presentation by Marek Teske)
- Three-body output will be dominating – do we really need further cooling?

 $I_2 + e \rightarrow I^+ + I^- + e$

Calcium source

$Ca + e \rightarrow Ca^+ + 2e$

- Geometry of the trap almost identical with the iodine source
- Electron gun aligned axially in the trap
- Optical access for cooling and detection

The source components: made by the workshop in Toruń, vacuum cleaned, ready to be assembled

Summary

Completed since the December meeting

- Channeltron pulsed electronics (high-pass filter for the signal, premaplifier, constant fracion discriminator, counter) – built
- Custom-designed distance tube for the channeltron
- High voltage source, MHV-SHV adapters connected
- Ion pump installed
- Safety valve for the transport insatalled
- Ion cooling simulations (to be presented by Marek Teske)
- Source of Calcium cations
 - Designed
 - All the parts produced, washed
 - Optics for cooling and detection ready in Toruń

Not yet completed

- Ion signals deteced
- Ion cooling not confirmed experimentally
- Final version of the Sinara
- Diagnostic cross with the MCP in Toruń with Gosia

Time to arrange the transport!

