

ZH Cross-section measurement at 365 GeV

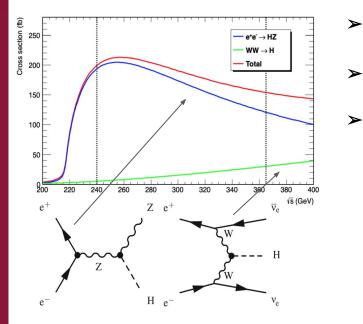
Gregorio Bernardi¹, Kevin Dewyspelaere¹, Jan Eysermans², Ang Li¹

> Higgs Performance meeting Apr 22th, 2024

1,APC-Paris, Université Paris Cité, CNRS/IN2P3 2, MIT

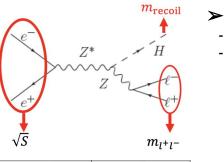
Summary

> Introduction

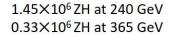

Comparative analysis between 240 and 365 GeV

Boosted decision Tree

Conclusion/Future steps



Introduction


>	Goal: measurement of the ZH cross-section at 365 GeV
	following 240 GeV methodology

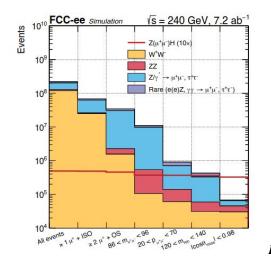
- Signal: $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ (focus on muons) $e^+e^- \rightarrow ZH \rightarrow e^+e^- + X$
- Z decaying leptonically and use of the recoil mass method: $M_{recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$

- Uncertainties at 240 GeV:
- Cross-section: 0.69 %
- Higgs mass: 4.0 MeV

	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	$tar{t}$	
\sqrt{s} (GeV)	88, 91, 94		157, 163		240	340-350 365	
Lumi/IP $(10^{34} cm^{-2} s^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab ⁻¹)	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
Number of events	$6 \times 10^{12} \text{ Z}$		$2.4 imes 10^8$ WW		$\begin{array}{c} 1.45 \times 10^{6} \ \mathrm{HZ} \\ +4.5 \times 10^{4} \ WW \rightarrow H \end{array}$	$1.9 \times 10^{\circ} t\bar{t}$ +3.3 × 10 ⁵ HZ +8 × 10 ⁴ WW \rightarrow H	

Include 365 GeV Gain ~23% ZH events

DEWYSPELAERE Kevin


3

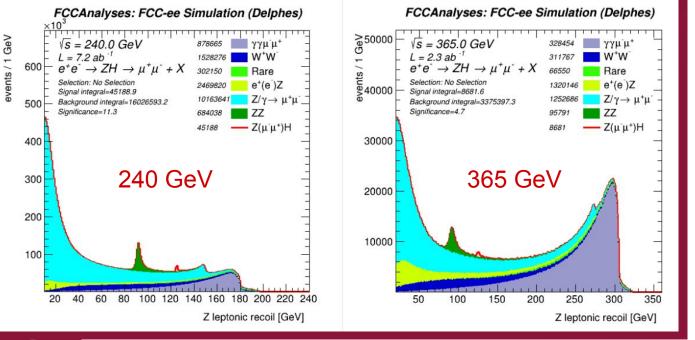
Monte Carlo samples and events selection

- Signal: $-Z(\mu^+\mu^-)H$ (Whizard/Pythia) **Background:** - W^+W^- (Pythia) $_{-}\gamma\gamma \rightarrow \mu\mu$ (Whizard/Pythia) $-e^+e^-Z$ (Whizard/Pythia) -ZZ(Pythia) - $Z/\gamma
 ightarrow \mu^+\mu^-$ (Whizard/Pythia) **Rare backgrounds:** - Z(qq)(Pythia)
 - Z(qq) (Pythia) - $Z(\tau^+\tau^-)H$ (Whizard/Pythia) - $Z(\nu\nu)H$ (Whizard/Pythia) - $\gamma\gamma \rightarrow \mu^+\mu^-$ (Whizard/Pythia) - $\gamma\gamma \rightarrow \tau^+\tau^-$ (Whizard/Pythia)

- > Events basic selection:
- 1. Select at least 2 leptons:
 - Momentum pt > 20 GeV
 - Opposite sign
 - One lepton required to be isolated
- 2. $m_{l^+l^-} \in [86, 96] \text{ GeV}$
- 3. $p_{l^+l^-} \in [20, 70] \text{ GeV}$
- 4. $m_{recoil} \in [120, 140] \text{ GeV}$

 \succ

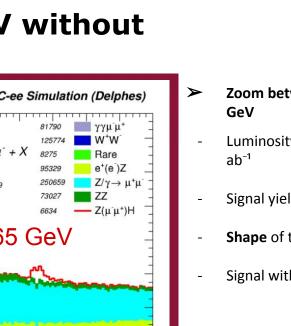
 \succ


 \succ

Comparative analysis at 240 and 365 GeV center of mass

Comparison 240/365 GeV without selection

Differences


- Luminosity from 7.2 to 2.3 ab⁻¹
- Signal yields 5 times lower
- Find the recoil mass peak from calculation at higher energy

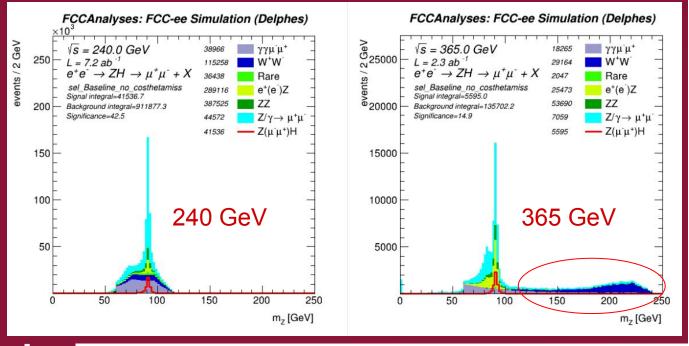
Comparison mrecoil distribution at 240 GeV (left) and 365 GeV (right) for the $\mu+\mu-$ channel in linear scale without selection

Comparison 240/365 GeV without selection

FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) 40 GeV 0.80 GeV s = 240.0 GeV Vs = 365.0 GeV 185848 81790 γγμ μ 14000 $L = 2.3 ab^{-1}$ = 7.2 ab -1 662816 W⁺W 125774 $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ Rare 184565 8275 o Selection: No Selection Selection: No Selection e⁺(e)Z 1373327 95329 events / €60000 Signal integral=44738.1 Signal integral=6634.9 $Z/\gamma \rightarrow \mu^+\mu^-$ 1897457 250659 Background integral=4919512.7 Background integral=634856.9 Significance=8.3 Significance=20.1 77 615497 73027 10000 50000 $Z(\mu^{-}\mu^{+})H$ 44738 6634 240 GeV 365 GeV 8000 40000 6000 30000 4000 20000 10000 2000 reduced and reduced to the 150 160 100 120 130 140 80 120 Z leptonic recoil [GeV] Z leptonic recoil [GeV]

160

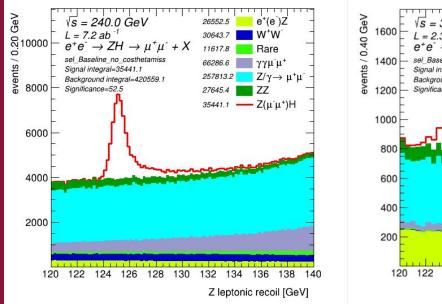
150

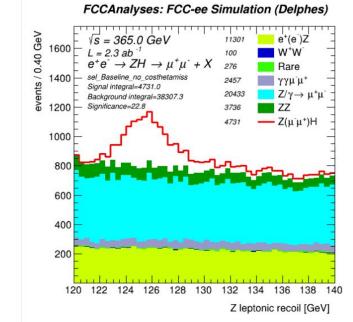

- Zoom between 80 and 160
- Luminosity from 7.2 to 2.3
- Signal yields 5 times lower
- Shape of the background
- Signal with **lower resolution**

Comparison mrecoil distribution at 240 GeV (left) and 365 GeV (right) for the $\mu+\mu-$ channel in linear scale without selection

DEWYSPELAERE Kevin

Reconstructed Z Mass (without Z mass selection cut)


- WW background is moved to higher energy for 365 GeV
- > The cut $m_{l^+l^-} \in [86, 96]$ GeV is removing it
- Better signal over background at 365 GeV



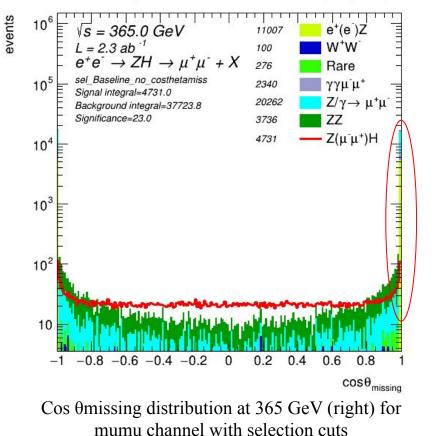
Reconstructed Z mass comparison at 240 GeV (left) and 365 GeV (right) for mumu channel without zll mass selection cut

Mass recoil of the Z leptons with basic selection cuts

FCCAnalyses: FCC-ee Simulation (Delphes)

- Momentum Cut < 70 GeV removed at 365 GeV
- \succ WW negligible at 365 GeV

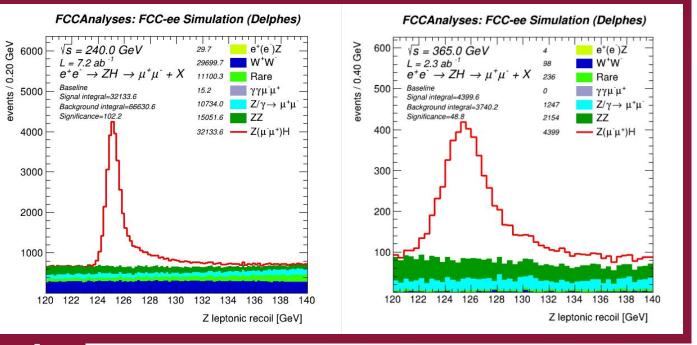
 \succ


- The cut on the mass is removing them
- \succ Resolution 3.5 times wider at 365 GeV
- \succ 7.5 times less signal and 11 times less background
- \succ **Significance** (S/sqrt(S+B) is ~23 at 365 GeV, vs. ~53 at 240 GeV with the preselection cuts.
- Selection used for ZH \succ cross-section measurement with BDT DEWYSPELAERE Kevin

mrecoil distribution comparison at 240 GeV (left) and 365 GeV (right) for mumu channel without $\cos \theta_{miss}$ selection cut

Cos θ_{miss} selection cut

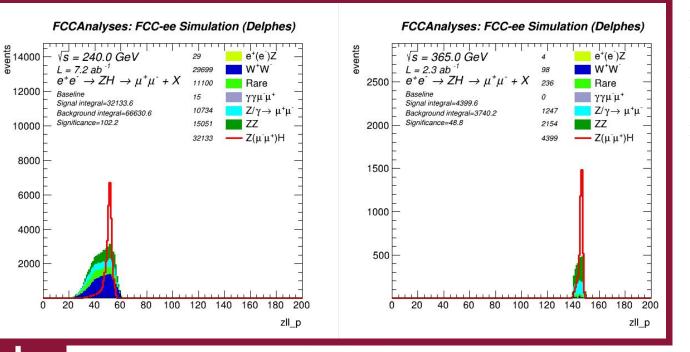
FCCAnalyses: FCC-ee Simulation (Delphes)



- Missing Energy refers to the amount of energy that is not measured
- Missing transverse E is the negative vectorial sum of the transverse momenta
- θmiss is the angle of the missing transverse energy vector
- > Cut $|\cos \theta_{miss}| < 0.98$ used for mass analysis only

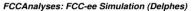
Mass recoil of the Z leptons with cos θ_{miss} selection cut

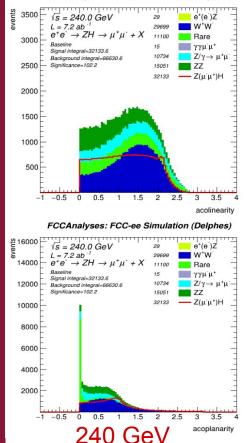
- Cut |cos θmiss| < 0.98
 used for mass analysis
 only
- To reduce the Z/γ event which typically contain hard ISR photons collinear to the beam
- Significance at 49 at 365 GeV
- 7 times less signal and 18 times less background

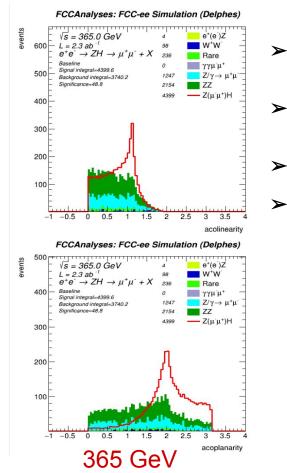


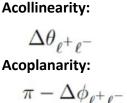
mrecoil distribution comparison 240 GeV (left) and 365 GeV (right) for mumu channel with selection cuts

Momentum of the reconstructed Z boson


- Z momentum higher by about 100 GeV at 365 GeV
- less background but more concentrated at 365 GeV
- System boosted at 365 GeV




Momentum of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel with $\cos \theta$ miss selection cut


Acollinearity and acoplanarity of the reconstructed Z boson

- Boosted system
 - At 365 GeV, we have sharp peaks appearing at ~1 (acolinearity) and at ~2 (acoplanarity) for the signal

Acollinearity (up) and acoplanarity (down) of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel with $\cos \theta$ miss selection cut

Boosted Decision Tree

14 DEWYSPELAERE Kevin

Boosted Decision Tree

- Machine learning algorithm that separates signal and background by giving a BDT score
- **BDT offers model independent** analysis
- Nominal samples (winter 2023) are used to train the BDT
- Training_variables for BDT:

Variable

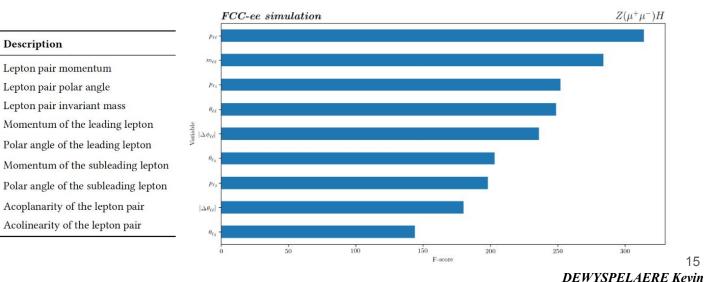
pe+e-

 $\theta_{\ell^+\ell^-}$

me+e-

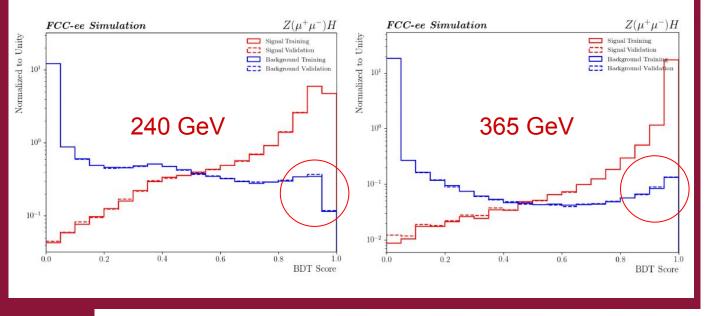
 $p_{l_{\rm leading}}$

 $\theta_{l_{\rm leading}}$


 $p_{l_{ ext{subleading}}}$ $heta_{l_{ ext{subleading}}}$

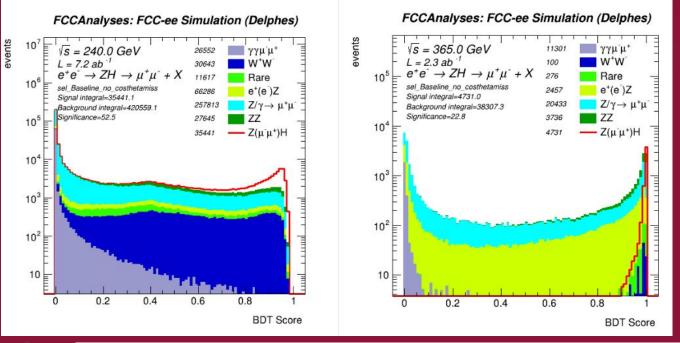
 $\Delta \theta_{\ell^+ \ell^-}$

 $\pi - \Delta \phi_{\ell^+ \ell^-}$


PIC

- Number of events for BDT training:
 - All signals passed the basic selection
 - Total Number of backgrounds = Total Number of Signals
- Number of events of each process is proportional to their cross-section×cut efficiency
- 1/2 of events for training
- 1/2 of events for testing

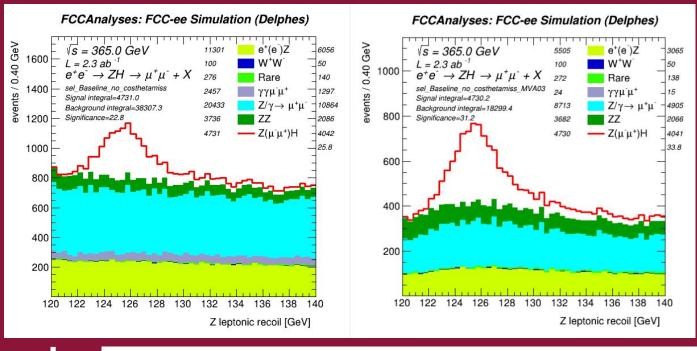
BDT score comparison



- Prove the universality of the BDT model used
- At 365 GeV, we are investigating why background is rising at high score

BDT score comparison 240 GeV (left) and 365 GeV (right) for mumu channel

BDT Score comparison



- BDT score comparison for signal and background
- At 365 GeV, we're investigating to know why background is rising at high score
- This BDT score will be fitted to measure the ZH cross-section

BDT score comparison 240 GeV (left) and 365 GeV (right) for mumu channel

Mass recoil of the Z leptons with and without BDT requirement

- We apply a cut on the BDT score to see its performance.
- Significance from 22 to 31
- With BDT score > 0.3, background is divided by 2

mrecoil distribution comparison 365 GeV for mumu channel without BDT selection (left) and with BDT score selection cut > 0.3 (right)

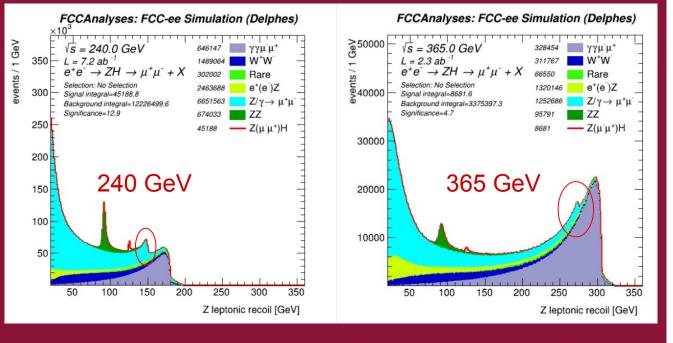
Conclusion

- Kinematic variables analysis clearly shows the effect of the strongly boosted system at 365 GeV
- > Yields, luminosity and shape of the backgrounds are changed
- > The WW background is essentially removed by the cut of the Z mass
- Lower resolution but better signal-to-background ratio
- BDT model used for ZH cross-section measurement

Future steps

Improve the BDT training model

- Investigating in the rising background at high score
- Training BDT with each samples separately
- > Do the analysis for **ee** channel (expect better momentum resolution)
- Use Combine to obtain results on the uncertainty of the ZH cross-section at 365 GeV
- Perform mass analysis



Back up

21 DEWYSPELAERE Kevin

Comparison 240/365 GeV without selection

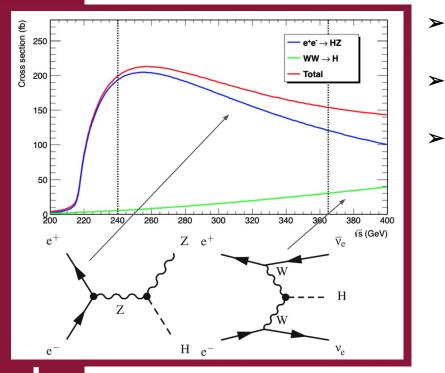
> Differences

- From 7.2 to 2.3 ab⁻¹
 luminosity
- Event Number divided by 10
- Find the recoil mass peak from calculation at higher energy

Comparison mrecoil distribution at 240 GeV (left) and 365 GeV (right) for the $\mu+\mu-$ channel in linear scale without selection

Mass recoil of the Z leptons with trained BDT machine learning

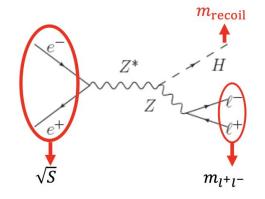
- Boosted decision Tree (BDT) machine learning used to extract signal and background by giving them a score.
- Backgrounds have low scores


 \succ

- For the moment nominal samples are used to trained the BDT
- We ordered the training samples

mrecoil distribution comparison 240 GeV (left) and 365 GeV (right) for mumu channel with BDT score > 0.3 selection cut

Introduction



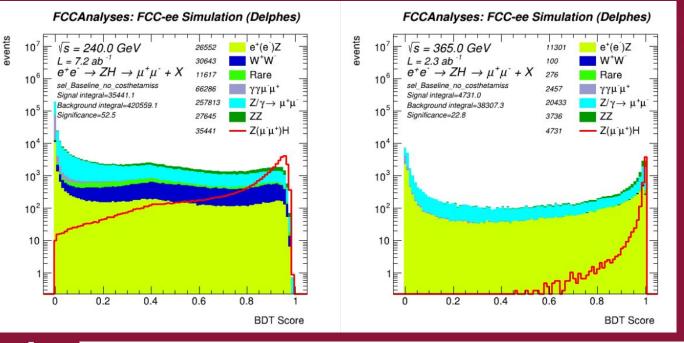
Improved-Born Higgs production cross-sections for the Higgsstrahlung process and the WW fusion process, incorporating initial state radiation, are predicted by HZHA Goal: measurement of the ZH cross-section at 365 GeV

- Signal: $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$
- Use of events with a Z decaying leptonically and reconstruction of the mass recoil without considering Higgs products:

$$M^2_{recoil} = (\sqrt{s} - E_{l\bar{l}})^2 - p^2_{l\bar{l}} = s - 2E_{l\bar{l}}\sqrt{s} + m^2_{l\bar{l}}$$

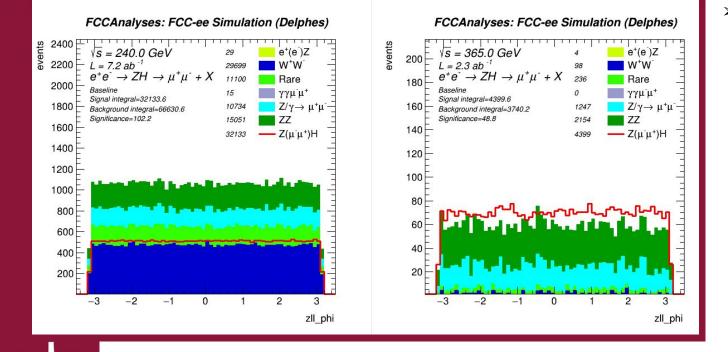
24 DEWYSPELAERE Kevin

Reconstructed Z Mass without selection

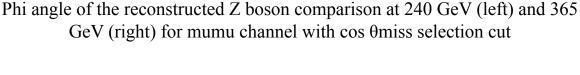

≻ FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) events / 0.20 GeV events / 0.20 GeV s = 240.0 GeV s = 365.0 GeV 10 26552 e⁺(e)Z 10 1130 e⁺(e)Z $L = 7.2 ab^{-1}$ L = 2.3 ab -1 W*W W⁺W 30643 100 $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ Rare 276 Rare 11617 10⁶ 10 sel Baseline no costhetamiss sel Baseline no costhetamiss 66286 γγμμ+ 2457 γγμμ+ Signal integral=35441.1 Signal integral=4731.0 257813 $Z/\gamma \rightarrow \mu^{+}\mu^{-}$ 20433 $Z/\gamma \rightarrow \mu^+\mu$ Background integral=420559.1 Background integral=38307.3 10 10 ZZ Significance=52.5 Significance=22.8 ZZ 27645 3736 Z(µ'µ+)H – Ζ(μ'μ⁺)Η 35441 4731 10 10 10³ 10^{3} 10² 102 10 10 75 80 85 90 95 100 105 110 115 120 75 80 85 90 95 100 105 110 115 120 m₇ [GeV] m₇ [GeV]

Reconstructed Z mass comparison at 240 GeV (left) and 365 GeV (right) for mumu channel without zll mass selection cut

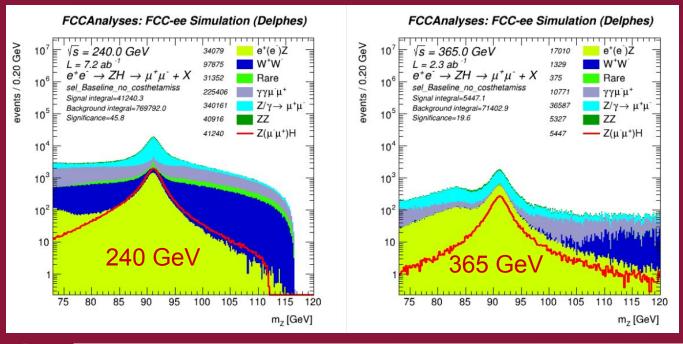
BDT Score comparison



- BDT score comparison for signal and background
- At 365 GeV, we're investigating to know why background is rising at high score
- This BDT score will be used in the final ZH cross-section fitting



BDT score comparison 240 GeV (left) and 365 GeV (right) for mumu channel


Phi angle of the reconstructed Z boson

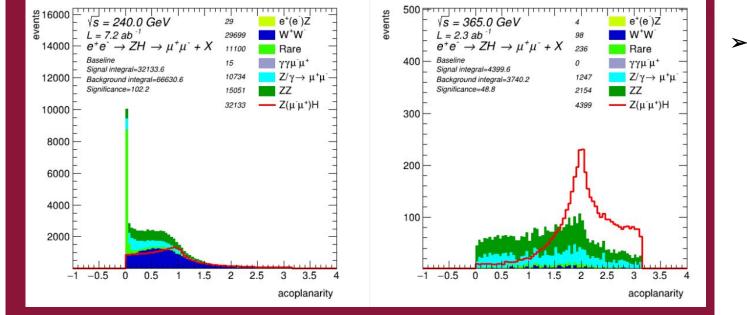
 At 365 GeV Z/γ and ZZ backgrounds are dominant

Reconstructed Z Mass without zll mass selection cut

- S WW background is moved
- to higher energy for 365 GeV

 \succ

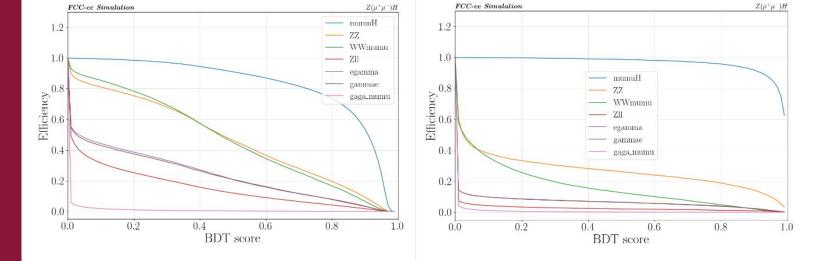
The cut at 86 < zll mass <
 96 GeV is removing them


Reconstructed Z mass comparison at 240 GeV (left) and 365 GeV (right) for mumu channel without zll mass selection cut

Acoplanarity of the reconstructed Z boson

FCCAnalyses: FCC-ee Simulation (Delphes)

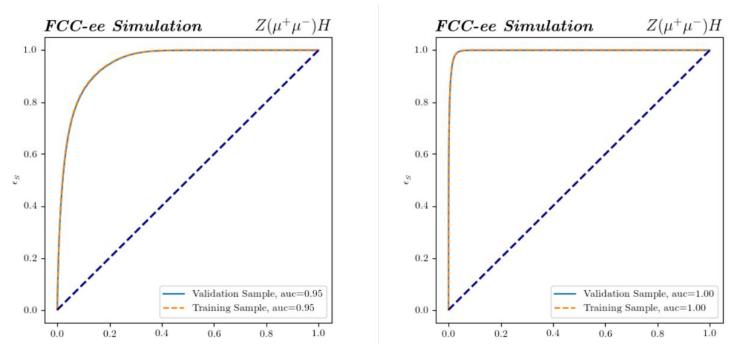
 Higher acoplanarity for signal at 365 GeV



FCCAnalyses: FCC-ee Simulation (Delphes)

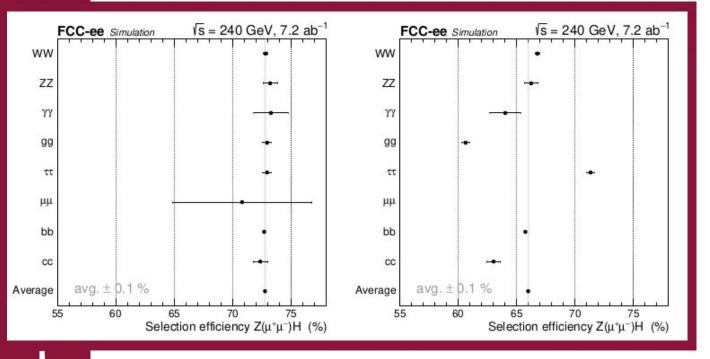
► Peak at 2

Acoplanarity of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel with cos θmiss selection cut



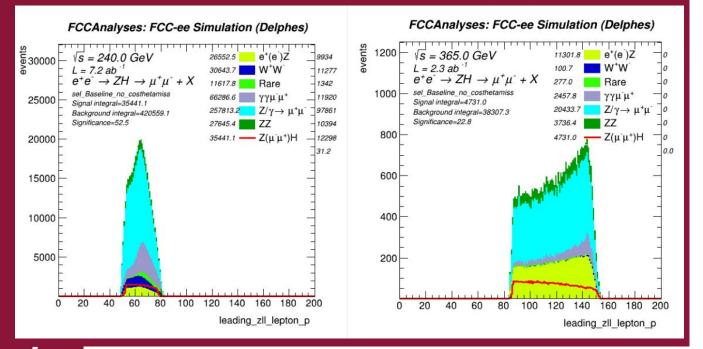
Efficiency comparison 240 GeV (left) and 365 GeV (right) for mumu channel

Efficiency of the BDT



Efficiency comparison 240 GeV (left) and 365 GeV (right) for mumu channel

Training_variables for BDT

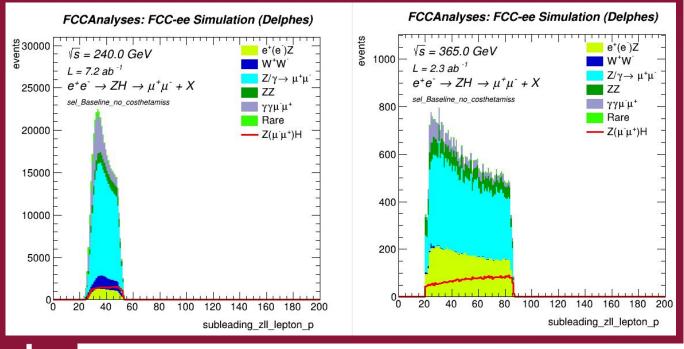


Selection efficiency of the different Higgs decay modes with $Z \Rightarrow$ mumu, The left column shows the selection efficiency with the basic selection (without $\cos(\theta miss)$ cut), and the right column shows selection efficiency with baseline selection (with $\cos(\theta miss)$ cut).

Momentum of the leading lepton coming from the Z decay

Momentum of the leading lepton coming from the Z decay comparison 240 GeV (left) and 365 GeV (right) for mumu channel

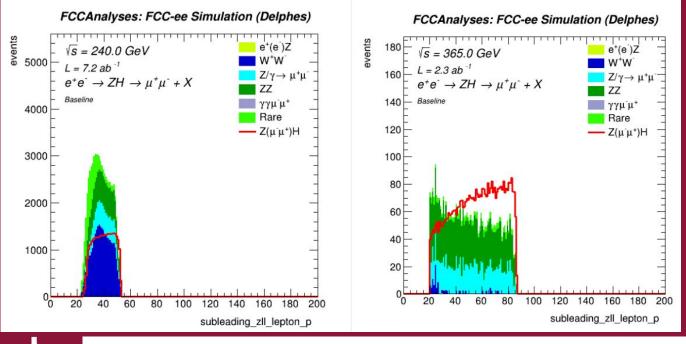
Momentum of the leading lepton coming from the Z decay



FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) events events 180 e+(e)Z s = 240.0 GeV e⁺(e)Z Vs = 365.0 GeV 5000 W*W W*W L = 7.2 ab -1 $L = 2.3 \text{ ab}^{-1}$ 160- $Z/\gamma \rightarrow \mu^+\mu$ $Z/\gamma \rightarrow \mu^+\mu$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ 77 140 Baseline Baseline 4000 γγμ μ* γγµµ⁺ Rare Rare 120 - Z(μ⁻μ⁺)Η $Z(\mu^{-}\mu^{+})H$ 3000 100 80 2000 60 40 1000 20 140 160 60 80 100 180 200 20 40 120 20 40 60 80 100 120 140 160 180 200 leading zll lepton p leading zll_lepton_p

Momentum of leading lepton coming from the Z decay comparison at 240 GeV (left) and 365 GeV (right) for mumu channel with $\cos \theta$ miss selection

Momentum of the subleading lepton coming from the Z decay



Momentum of the subleading lepton coming from the Z decay comparison 240 GeV (left) and 365 GeV (right) for mumu channel

Momentum of the subleading lepton coming from the Z decay

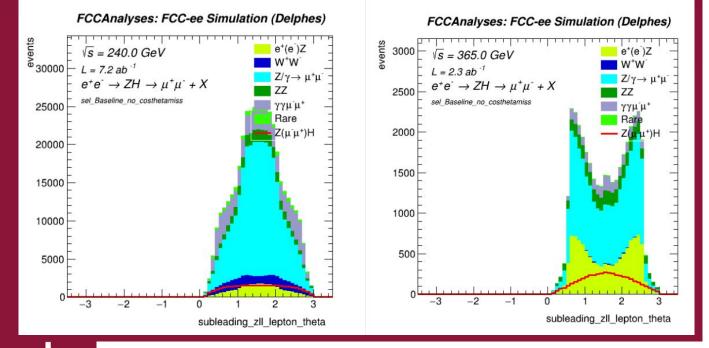
W

Momentum of the leading lepton coming from the Z decay comparison 240 GeV (left) and 365 GeV (right) for mumu channel with $\cos \theta miss$ selection cut

Theta angle of the leading lepton coming from the Z decay

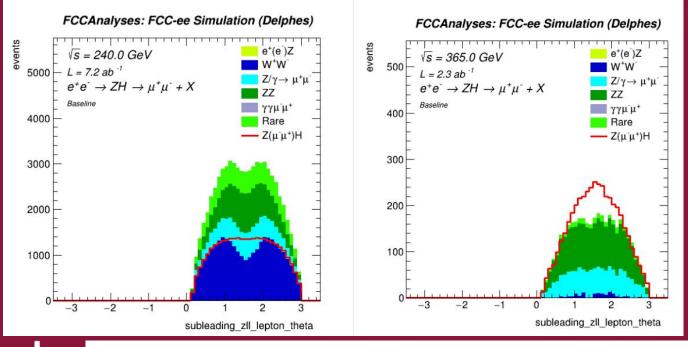
FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) events 25000 r events e⁺(e)Z s = 240.0 GeV e⁺(e)Z s = 365.0 GeV W⁺W W*W $L = 7.2 ab^{-1}$ $L = 2.3 ab^{-1}$ 5000 $Z/\gamma \rightarrow \mu^+\mu$ $Z/\gamma \rightarrow \mu^{+}\mu$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ sel Baseline_no_costhetamiss sel Baseline no costhetamiss γγμ μ γγμμ 20000 4000 Rare Rare - Ζ(μ'μ' 15000 3000 10000 2000 1000 5000 0 2 3 -3 2 -2 0 3 -1 leading zll lepton theta leading_zll_lepton_theta

Theta angle of the leading lepton coming from the Z decay comparison at 240 GeV (left) and 365 GeV (right) for mumu channel


Theta angle of the leading lepton coming from the Z decay

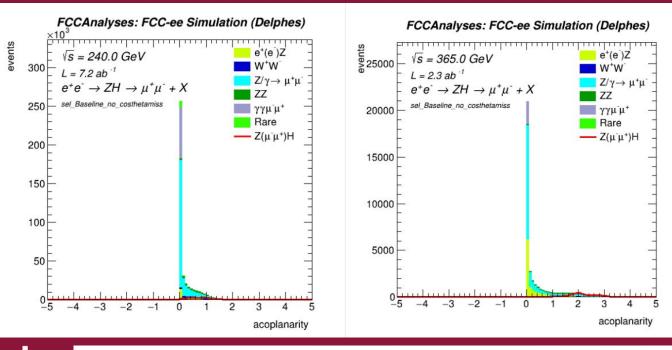
Theta angle of the leading lepton coming from the Z decay comparison at 240 GeV (left) and 365 GeV (right) for mumu channel with cos θmiss selection

Theta angle of the subleading lepton coming from the Z decay



U

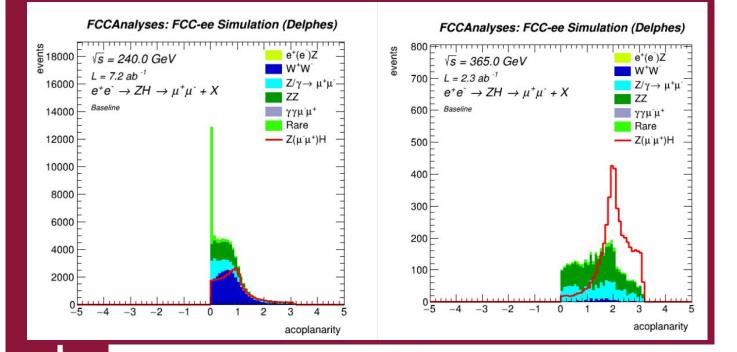
Theta angle of the subleading lepton coming from the Z decay comparison at 240 GeV (left) and 365 GeV (right) for mumu channel


Theta angle of the subleading lepton coming from the Z decay

U

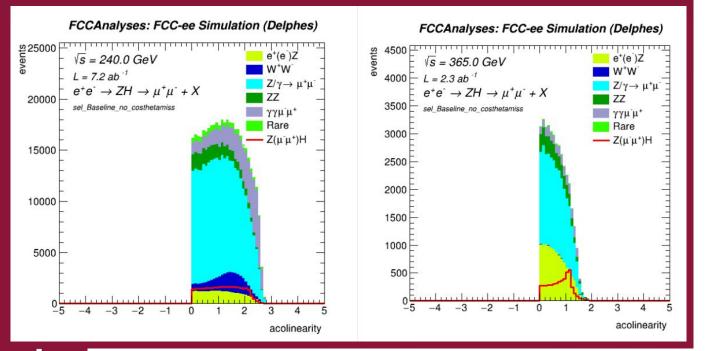
Theta angle of the subleading lepton coming from the Z decay comparison at 240 GeV (left) and 365 GeV (right) for mumu channel with cos θmiss selection cut

Acoplanarity of the reconstructed Z boson



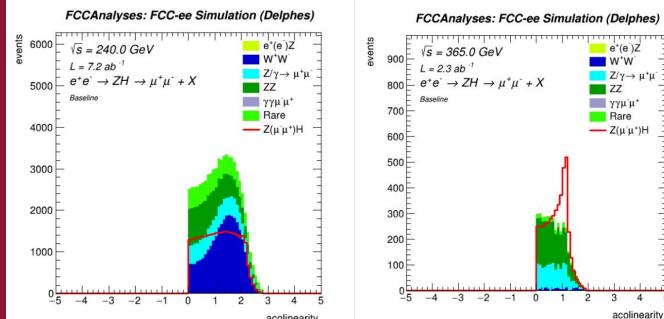
Acoplanarity of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel

Acoplanarity of the reconstructed Z boson



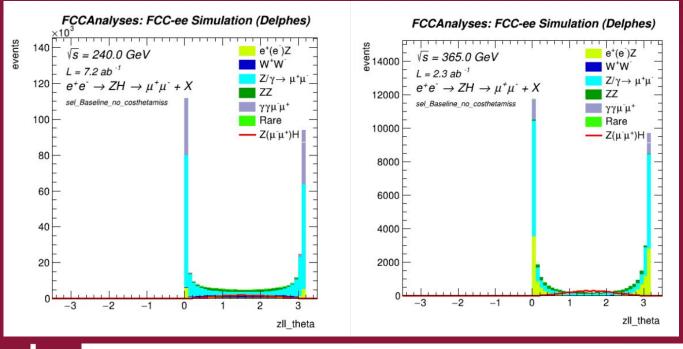
Acoplanarity of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel with cos θmiss selection cut

Acollinearity of the reconstructed Z boson



Acollinearity of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel

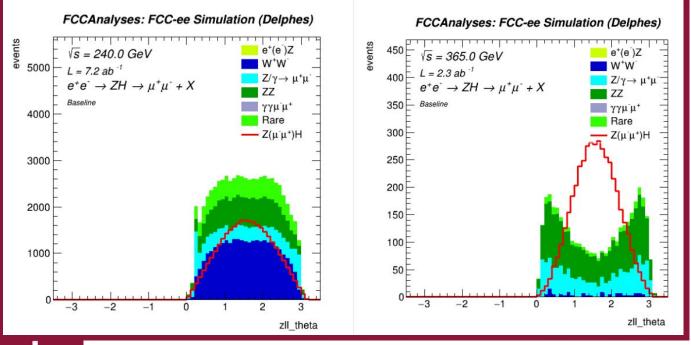
Acollinearity of the reconstructed Z boson



acolinearity

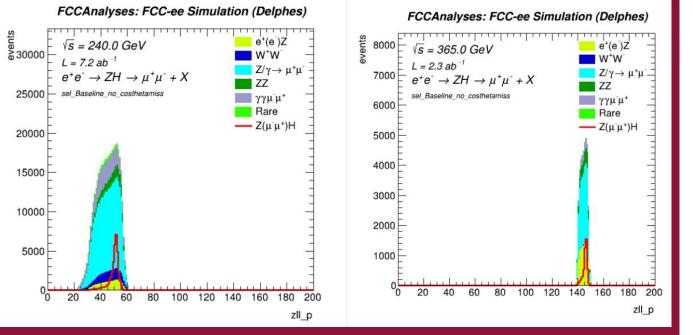
Acollinearity of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel with $\cos \theta$ miss selection cut

Theta angle of the reconstructed Z boson



Theta angle of the reconstructed Z boson comparison at 240 GeV (left) and 365 GeV (right) for mumu channel

Theta angle of the reconstructed Z boson



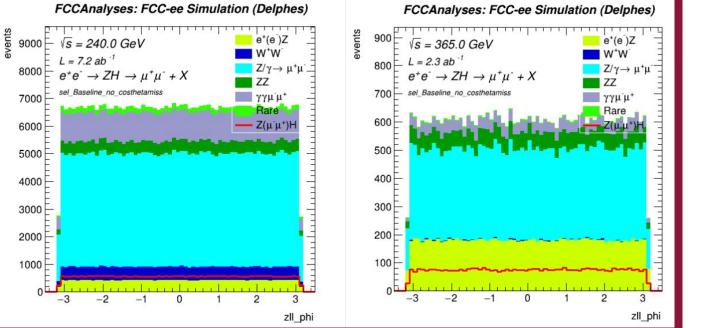
Theta angle of the reconstructed Z boson comparison at 240 GeV (left) and 365 GeV (right) for mumu channel with cos θmiss selection cut

Momentum of the reconstructed Z boson

 Z momentum gain 100 GeV at 365 GeV

Momentum of the reconstructed Z boson comparison at 240 GeV (left) and 365 GeV (right) for mumu channel

Momentum of the reconstructed Z boson


FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) stents 12000 events 2500 e+(e)Z - √s = 240.0 GeV e⁺(e)Z √s = 365.0 GeV W⁺W W*W $L = 7.2 ab^{-1}$ $L = 2.3 ab^{-1}$ $Z/\gamma \rightarrow \mu^+\mu^ Z/\gamma \rightarrow \mu^{+}\mu^{-}$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ 10000 77 2000 Baseline Baseline γγμμ+ γγµµ⁺ Rare Rare - Z(μ⁻μ⁺)Η 8000 - Z(μ⁻μ⁺)Η 1500 6000 1000 4000 500 2000 120 140 160 180 200 20 60 80 100 40 80 20 60 100 120 140 160 180 200 zll p zll p

Z momentum gain 100 GeV at 365 GeV

Momentum of the reconstructed Z boson comparison 240 GeV (left) and 365 GeV (right) for mumu channel with $\cos \theta$ miss selection cut

Phi angle of the reconstructed Z boson

- Number of events divided by 3
- We gain a bit of signal noise ratio
- Need to add integrals and SNR number on the plot

Phi angle of the reconstructed Z boson comparison at 240 GeV (left) and 365 GeV (right) for mumu channel

Phi angle of the reconstructed Z boson

FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) events events 180 2000 s = 240.0 GeV (e e⁺(e)Z s = 365.0 GeV W⁺W $L = 7.2 ab^{-1}$ $L = 2.3 ab^{-1}$ 160-1800 $Z/\gamma \rightarrow \mu^+\mu$ $Z/\gamma \rightarrow \mu^{+}\mu$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ 77 1600 140 Raseline Baseline γγμμ* γγμμ+ Rare Rare 1400 120 - Z(μ⁻μ⁺)Η Ζ(μ⁻μ⁺)Η 1200 100 1000 80 800 60 600 40 400 20 200 -3 2 0 2 -3 -2 0 3 -1 leading zll_lepton_phi leading zll lepton phi

- Number of events divided by 3
- We gain a bit of signal noise ratio
- Need to add integrals and SNR number on the plot

Phi angle of the reconstructed Z boson comparison at 240 GeV (left) and 365 GeV (right) for mumu channel with cos θmiss selection cut

Sample used for BDT training

Sample Name	Process	Generator	Training + Validation	cross-section (pb)
Higgs Processes	NS - 31			
wzp6_ee_mumuH	$e^+e^- \rightarrow \mu^+\mu^-H$	WHIZARD + PYTHIA6	873007	0.0067643
Diboson Processes				
p8_cc_ZZ	$e^+e^- \rightarrow ZZ$	PYTHIAS	59261	1.35899
p8_ee_WW_mumu	$e^+e^- \rightarrow WW \rightarrow \mu^+ \nu_\mu \mu^- \bar{\nu_\mu}$	PYTHIA8	62966	0.25792
Dilepton Processes				
wzp6_ee_mumu	$e^+e^- \rightarrow \mu^+\mu^-$	WHIZARD + PYTHIA6	551655	5.288
Electron Photon Pr	ocesses			
wzp6_egamma_eZ_Zmumu	$e^- \gamma \rightarrow e^- Z(\mu^+ \mu^-)$	WHIZARD + PYTHIA6	28662	0.10368
wzp6_gammae_eZ_Zmumu	$e^+\gamma \rightarrow e^+Z(\mu^+\mu^-)$	WHIZARD + PYTHIA6	28512	0.10368
Photon Photon Pro				
wzp6_gaga_mumu_60	$\gamma\gamma ightarrow \mu^+\mu^-$	WHIZARD + PYTHIA6	141949	1.5523
Sample Name	Process	Generator	Training + Validation	cross-section (pb)
Higgs Processes				
wzp6_ee_eeH	$e^+e^- \rightarrow e^+e^-H$	WHIZARD + PYTHIA6	769907	0.0067643
Diboson Processes			Nacional de Securit	2000 C C C C C C C C C C C C C C C C C C
p8_ee_ZZ	$e^+e^- \rightarrow ZZ$	PYTHIAS	29894	1.35899
p8_ee_WW_ee	$e^+e^- \rightarrow WW \rightarrow e^+\nu_e e^-\bar{\nu_e}$	PYTHIA8	34874	0.25792
Dilepton Processes				
wzp6_ee_ee_Mee_30_150	$e^+e^- \to e^+e^-$ (30-150 GeV)	WHIZARD + PYTHIA6	660832	8.305
Electron Photon Pr	ocesses			
wzp6_egamma_eZ_Zee	$e^- \gamma \rightarrow e^- Z(e^+ e^-)$	WHIZARD + PYTHIA6	7883	0.05198
wzp6_gammae_eZ_Zee	$e^+\gamma \rightarrow e^+Z(e^+e^-)$	WHIZARD + PYTHIA6	7887	0.05198
Photon Photon Pro	cesses			
wzp6_gaga_ee_60	$\gamma \gamma \rightarrow e^+ e^-$	WHIZARD + PYTHIA6	28534	0.873

Samples used for the BDT analysis, $\mu^+\mu^-$ (up) and e^+e^- (down)

