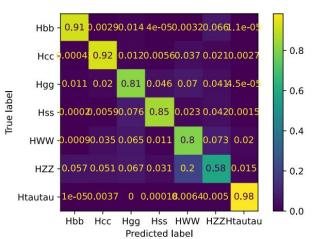
Higgs → bb/cc/gg/ss/WW/ZZ/tautau with Z(II,vv)H at \sqrt{s} =240 GeV

22/04/2024

X

Alexis Maloizel

Supervised by Giovanni Marchiori


Introduction (1/2)

Results from Giovanni's latest presentation (15/05/23: <u>link</u>) and mid-term report

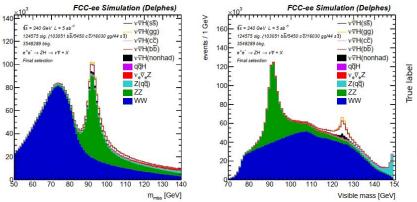
ZII: 7 categories (WW/ZZ/tautau discriminated in the NN using d_merge, m_had and E_miss variables)

Cut	ZHbb		ZHcc		ZHgg		ZHss		ZHWW		ZHZZ		ZHtautau		ZZ		WW		zเเ		Zqq	
	Yigld	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff										
No cuts	40 55		2013		5700		17		14985		1838		4367		6794950		82192500		67965000		263269500	
one Z->ll candidate	36448	90	1808	90	5119	90	15	90	13571	91	1664	91	3956	91	566449	8	772157	1	13389259	20	141045	0
m(ll) 81-101 GeV	32793	90	1627	90	4605	90	14	90	12151	90	1502	90	3547	90	363333	64	190171	25	5677860	42	7530	5
<pre> cos(theta_ll) <0.8</pre>	26694	81	1327	82	3746	81	11	81	9889	81	1223	81	2884	81	227312	63	145268	76	906114	16	5550	74
m(recoil) 120-140 GeV	25497	96	1268	96	3580	96	11	96	9408	95	1154	94	2743	95	32182	14	61912	43	206164	23	1079	19
max p(extra lep) < 25 GeV	24318	95	1256	99	3577	100	11	100	6912	73	1040	90	2031	74	28850	90	61825	100	206163	100	977	91
l=e	11950		616		1754		5		3386		510		998		14481		31880		171906		466	
l=mu	12368		640		1823		5		3526		530		1033		14369		29945		34258		511	

NN separation matrix

1D parametrical fit results :

Relative	error	on	mu_bb:	0.82%
Relative	error	on	mu_cc:	4.96%
Relative	error	on	mu_gg:	2.70%
Relative	error	on	mu_ss:	377.81%
Relative			2010	
Relative	error	on	mu_ZZ:	18.35%
Relative	error	on	mu_tau	tau: 3.31%


Introduction (2/2)

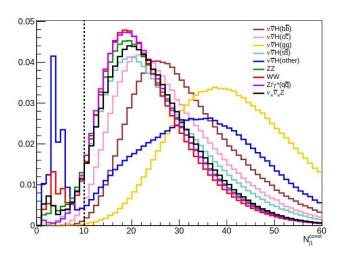
Zvv: 5 categories with bb/cc/gg/ss/nonhad

Table 5: Event cutflow for the $\nu \bar{\nu} H$ analysis, assuming an integrated luminosity $L = 5 \text{ ab}^{-1}$ of *ee* collisions at $\sqrt{s} = 240 \text{ GeV}$.

Selection	$\nu \bar{\nu} H$	$(b\overline{b})$	νūΙ	$H(c\bar{c})$	$\nu \bar{\nu} E$	I(gg)	νūŀ	$H(s\bar{s})$	$\nu \bar{\nu} H($	(other)	qqH(q =	u, d, s, c, b	ZZ	Z	WW	1	$Z/\gamma^*(q$	$(q\bar{q})$	ν_e^{i}	$\bar{\nu}_e Z$
	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield		Yield	l ε (%)
No cuts	134500	-	6675	-	18910	-	55	-	70285	-	681520	-	6794950		82192500	-	263269500	A	166370) -
No lepton with $p > 20 \text{ GeV}$	123364	92	6531	98	18877	100	55	100	49340	70	580210	85	5299230	78	49001192	60	254437693	97	152109	91
$45 < E_{j1} < 105 \text{ GeV}, 20 < E_{j2} < 70 \text{ GeV}$	121338	98	6425	98	18521	98	54	98	37915	77	16957	3	1660546	31	6117861	12	99840730	39	139887	92
$n_{\rm const}^{j1} > 10, n_{\rm const}^{j2} > 6$	120775	100	6304	98	18480	100	51	93	32320	85	16522	97	1457666	88	5431194	89	93228121	93	101358	72
$ \cos \theta_{jj} < 0.9$	109227	90	5701	90	16735	91	46	90	29248	90	14632	89	1114929	76	3869367	71	567057	1	81757	81
$ \cos(\theta_{j1} + \theta_{j2}) > 0.5$	108844	100	5683	100	16629	99	46	100	28522	98	14508	99	883038	79	3071403	79	549323	97	70911	87
$ \cos(\phi_{j1} - \phi_{j2}) < 0.999$	105409	97	5504	97	16145	97	44	97	27780	97	13959	96	866569	98	3006142	98	268455	49	69145	98
$70 < m_{\rm vis} < 150 { m ~GeV}, 50 < m_{\rm miss} < 140 { m ~GeV}$	103051	98	5450	99	16030	99	44	99	25967	93	13386	96	830000	96	2532328	84	91053	34	55594	1 80

Histograms of interest, after selection

NN separation matrix 0.98 0.0022 0.01 3e-05 0.016 Hbb -Hcc -0.00076 0.94 0.012 0.0063 0.072 Hgg -0.019 0.021 0.81 0.053 Hss -0.00021 0.0041 0.08 0.87 0.069 Hnonhad -0.025 0.05 0.059 0.024 0.74 Hss Hnonhad Hbb Hcc Hgg Predicted label


0.8 2D fit result - 0.6 Signal strength Uncertainty (%) 5 POIs 4 POIs 4 POIs 3 POIs $b\overline{b}$ 0.370.37 0.370.37 $c\bar{c}$ 2.502.502.502.501.25 1.241.25 1.24 ggss 160 160 1.46 1.46 other -

Updated selection

Used latest jet tagger version (addition of isU/D/tau scores)

-> Removed former variables used to split WW/ZZ/tautau

• Removed cut on the N of constituants in the jets to avoid cutting *vv*Htautau events.

 Also updated cut on m_miss, and included it in the NN training

 Both ZII and Zvv now are studied with 7 decay categories

Cutflow updates - Zvv

Before

Table 5: Event cutflow for the $\nu \bar{\nu} H$ analysis, assuming an integrated luminosity $L = 5 \text{ ab}^{-1}$ of *ee* collisions at $\sqrt{s} = 240 \text{ GeV}$.

Selection	$\nu \bar{\nu} H$	$(b\overline{b})$	νŪΙ	$I(c\bar{c})$	$\nu \bar{\nu} H$	(gg)	$\nu \bar{\nu} H$	$I(s\bar{s})$	$\nu \bar{\nu} H($	other)	qqH(q =	u, d, s, c, b	ZZ	5	WW	7	$Z/\gamma^*(q$	(\bar{q})	ν_{ei}	$\bar{\nu}_e Z$
	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)	Yield	ε (%)
No cuts	134500	-	6675	-	18910	-	55	-	70285	-	681520	-	6794950	-	82192500	-	263269500	-	166370	-
No lepton with $p > 20 \text{ GeV}$	123364	92	6531	98	18877	100	55	100	49340	70	580210	85	5299230	78	49001192	60	254437693	97	152109	91
$45 < E_{j1} < 105 \text{ GeV}, 20 < E_{j2} < 70 \text{ GeV}$	121338	98	6425	98	18521	98	54	98	37915	77	16957	3	1660546	31	6117861	12	99840730	39	139887	92
$n_{\rm const}^{j1} > 10, n_{\rm const}^{j2} > 6$	120775	100	6304	98	18480	100	51	93	32320	85	16522	97	1457666	88	5431194	89	93228121	93	101358	72
$ \cos \theta_{jj} < 0.9$	109227	90	5701	90	16735	91	46	90	29248	90	14632	89	1114929	76	3869367	71	567057	1	81757	81
$\left \cos(\theta_{j1} + \theta_{j2})\right > 0.5$	108844	100	5683	100	16629	99	46	100	28522	98	14508	99	883038	79	3071403	79	549323	97	70911	87
$ \cos(\phi_{j1} - \phi_{j2}) < 0.999$	105409	97	5504	97	16145	97	44	97	27780	97	13959	96	866569	98	3006142	98	268455	49	69145	98
$70 < m_{\rm vis} < 150 { m ~GeV}, 50 < m_{\rm miss} < 140 { m ~GeV}$	103051	98	5450	99	16030	99	44	99	25967	93	13386	96	830000	96	2532328	84	91053	34	55594	80

After

Cut	vvHbb		vvHcc		vvHgg		vvHss		VVHWW		VVHZZ		vvHtautau -> low	qqH	3	nuenueZ		Zqq		WW		ZZ	
	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield -> Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff
No cuts	134500		6675		18910		55		49700		6100		14485 -> hi g h	681520		166370		263269500		82192500		6794950	
No leptons with p>20 GeV	123364	92	6531	98	18877	100	55	100	34142	69	5335	87	-> ⊴ 9824 68	580210	85	152109	91	254437693	97	49001192	60	5299230	78
15 <e_j1<105, 10<e_j2<70="" gev<="" td=""><td>122075</td><td>99</td><td>6439</td><td>99</td><td>18501</td><td>98</td><td>54</td><td>98</td><td>32873</td><td>96</td><td>4922</td><td>92</td><td>7801 -> 79/</td><td>16777</td><td>3</td><td>147609</td><td>97</td><td>109466219</td><td>43</td><td>6515777</td><td>13</td><td>1811708</td><td>34</td></e_j1<105,>	122075	99	6439	99	18501	98	54	98	32873	96	4922	92	7801 -> 79/	16777	3	147609	97	109466219	43	6515777	13	1811708	34
<pre> cos(theta_jj) <0.9</pre>	110401	90	5824	90	16754	91	49	90	29563	90	4226	86	6496 -> 183	14859	89	92878	63	2556074	2	4698934	72	1312817	72
cos(th_j1+th_j2)>0.5	110014	100	5806	100	16648	99	49	100	28351	96	4025	95	6441-> 199jh	14725	99	80799	87	2508454	98	3787830	81	1035917	79
cos(phi_j1-phi_j2)<0.999	106539	97	5623	97	16165	97	48	97	27633	97	3919	97	-> 16200 0 96	14169	96	78719	97	2045260	82	3698506	98	1014048	98
70 <mvis<150, 60<mmiss<220="" gev<="" td=""><td>105661</td><td>99</td><td>5555</td><td>99</td><td>15955</td><td>99</td><td>47</td><td>99</td><td>27094</td><td>98</td><td>3792</td><td>97</td><td>6165 -> (99)</td><td>13083</td><td>92</td><td>77045</td><td>98</td><td>2039752</td><td>100</td><td>2846585</td><td>77</td><td>974735</td><td>96</td></mvis<150,>	105661	99	5555	99	15955	99	47	99	27094	98	3792	97	6165 -> (99)	13083	92	77045	98	2039752	100	2846585	77	974735	96
d23>0, d34>0	105661	100	5555	100	15955	100	47	100	27078	100	3787	100	5896 -> 196	13083	100	76961	100	2039516	100	2829867	99	973642	100
All cuts	105661	100	5555	100	15955	100	47	100	27078	100	3787	100	5896 -> 100h	13083	100	76961	100	2039516	100	2829867	100	973642	100
Efficiency (%)	vvHbb	vvHcc	vvHgg	y v	vHss vv	HWW	VVHZZ VVH	Htautau	Hpp	nuenue	Z	Zqq	WW -> miZZ										
	78.56	83.23	84.3	3 8	4.52 54	.48	62.09	40.70	1.92	46.2	6 0	.77	3.44										
Eff. in ZH(other) channels wrt ha	ad decays	(%)	W	V and the	ZZ tau	itau																	
			83.6	5 8	2.51 77	.83																	

Fitting with Combine

Cross-checking fitting results between previous code (HistFactory RooFit script) and Combine

ZII template fit	bb	CC	gg	SS	ww	ZZ	tautau
HistFactory	0.72	4.31	2.35	333.73	1.75	15.17	4.49
Combine	0.73	4.31	2.35	335	1.77	15.10	4.45
CombineTF	0.71	4.25	2.37	355	1.75	15.4	4.50

Systematics : MCstats + 5% bkg unc.

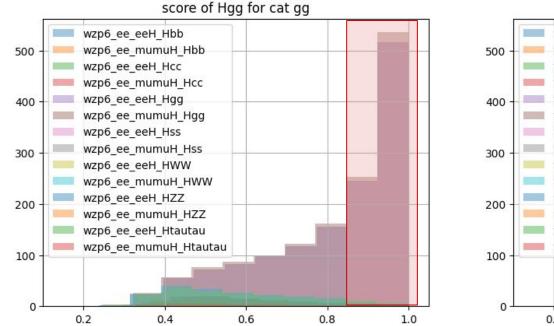
Similar cross-checking has been performed for analytical fit (between HF and combine)

Channel combination

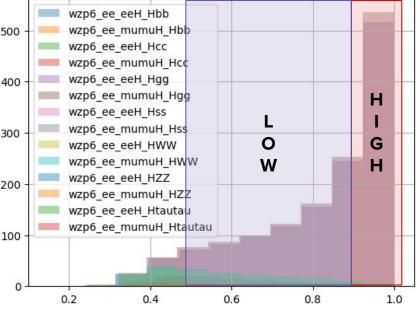
Channels combination results

	bb	СС	gg	SS	ww	ZZ	tautau
template comb.	0.33	2.16	1.10	134	1.56	11.5	4.00
analytic (ZII) + template (Znunu)	0.35	2.32	1.14	140	1.68	10.7	3.25

- Old results
 - ZII


Relative error on mu_bb: 0.82% Relative error on mu_cc: 4.96% Relative error on mu_gg: 2.70% Relative error on mu_ss: 377.81% Relative error on mu_WW: 2.00% Relative error on mu_ZZ: 18.35% Relative error on mu_tautau: 3.31% Ζνν

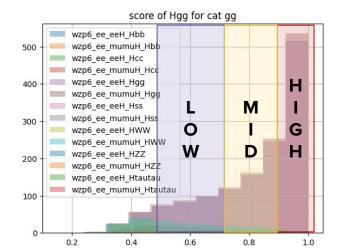
Signal strength		Uncerta	inty (%)	
	5 POIs	4 POIs	4 POIs	3 POIs
$b\overline{b}$	0.37	0.37	0.37	0.37
$c\overline{c}$	2.50	2.50	2.50	2.50
<i>99</i>	1.25	1.24	1.25	1.24
$s\overline{s}$	160	160	-	-
other	1.46	7.1	1.46	-


 If the full hadronic decay channel workspace is available, it can be included to this combination

Purity categorization (1/2)

Goal : increase analysis statistics by including purity categories in the samples after

score of Hgg for cat gg



Purity categorization (2/2)

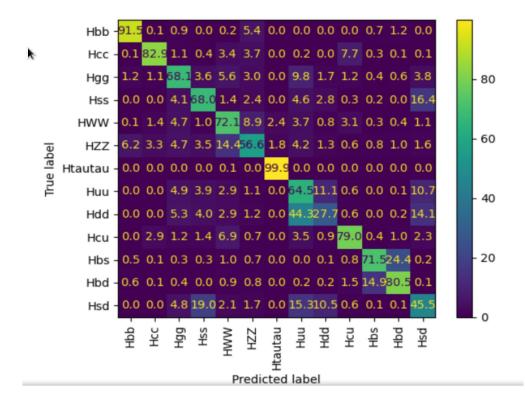
ZII:

	bb	сс	99	SS	ww	ZZ	tautau
ZII	0.71	4.25	2.37	355	1.75	15.4	4.50
ZII with purity cat.	0.70	4.06	2.27	269	1.72	13.0	3.97

Categorization can still probably be slightly improved to win small .% in some categories

Including a 3rd category very slightly increases max significances but no specific improvement in precision

Same study for Zvv is WIP


uu, dd and flavour violating samples (1/2)

Generated H to **uu**, **dd**, and **cu**, **bs**, **bd**, **sd** samples (400k events each) and prepared analysis elements to be included in the analysis

	ZHbb	ZHcc	ZHgg	ZHss	ZHWW	ZHZZ	ZHtautau	ZHcu	ZHbd	ZHbs	ZHsd
Efficiency (%)	59.96	62.42	62.75	62.88	45.65	53.62	41.22	62.59	61.66	61.45	62.94
Eff. in e channel (%)	ZHbb	ZHcc	ZHgg	ZHss	ZHWW	ZHZZ	ZHtautau	ZHcu	ZHbd	ZHbs	ZHsd
	58.93	61.24	61.53	61.61	44.78	52.67	40.87	59.73	58.73	58.35	59.80
Eff. in mu channel (%)	ZHbb	ZHcc	ZHgg	ZHss	ZHWW	ZHZZ	ZHtautau	ZHcu	ZHbd	ZHbs	ZHsd
	60.99	63.59	63.97	64.14	46.53	54.56	41.57	65.45	64.59	64.54	66.08
Eff. in ZH(other) channels w	vrt had deo	cays (%)	62.		ZZ taut 88 55.						

uu, dd and flavour violating samples (2/2)

Generated H to **uu**, **dd**, and **cu**, **bs**, **bd**, **sd** samples (400k events each) and prepared analysis elements to be included in the analysis

Conclusion

- Included the 7 categories (bb/cc/gg/ss/WW/ZZ/tautau) in both Z(II,vv) channels
- Updated selection and analysis lead to an upgrade in both channel and combination yielded first promising results
- Whole analysis was re-implemented by Giovanni in FCCAnalysis/FCCeePhysicsPerformance git forks
- WIP to improve Znunu channel (and combination) with purity
- WIP to include newly generated signal samples for Huu, Hdd, Hcu, Hbs, Hbd, Hsd in the analysis