

SPHerical Dynamics of Miniquasars and Dark Matter Minihalos

Lauren Morley August 22, 2024

In collaboration with: Finn Karstens, Aster Schnell, Prof. Dr. Laura Sagunski, and Dr. Sean Tulin

Introduction

Table of Contents

- → Background Information
- → The Teams
 - The Grackle Team
 - The Quasar Team
- → The Research
- → Summary
- → Results
- → Next Steps

Image credit: Frenk & White, 2012

Table of Contents

What are Minihalos and Miniquasars?

- → Minihalos are small Dark Matter (DM) halos that are the birthplace for the first stars (Population III)
 - Mass $10^5 10^6$ Msol
 - Predicted to exist but *no observational evidence*
- → Miniquasars are Quasar-like objects on an incredibly small scale
 - Predicted to form on Intermediate Mass Black Holes (IMBH) with accreting gas
 - *Radiative feedback:* energy released impacts surroundings

Image credit: NASA, ESA and J. Olmsted (STScI)

S. Tulin & L. Sagunski (2023)

DM Halo on Galactic Scales

Image credit: Astrobites.org

Image credit: Frenk & White, 2012

Background Information

Our Models

- → Self-Interacting Dark Matter (SIDM)
 - Proposed to solve the *core-cusp* problem
 - Particles interact with each other through forces other than gravity.
 - Could be elastic (non dissipative) or inelastic (dissipative)

→ Role of SIDM in Minihalos

- Puzzled on how Supermassive Black Holes (SMBH) grow so fast
- IMBH predicted to exist as intermediate step in growing SMBH
- Our Idea: from collapsing DM, not gas

S. Tulin, H. Yu (2017)

Background Information

Our Theoretical Model

→ Simulating dynamics of DM halo with gas as a series of **concentric shells**

- Includes spherical symmetry
- → SPHerical Python Package was utilized
 - Includes DM interactions, gas interactions, and radiative feedback

Background Information

Motivation + Main Goals

→ Motivation

- Want to test how formation of Pop III stars reacts with different DM parameters
 - What happens if both gas and DM collapse at epoch?
- Suspect system won't form Pop III stars, instead will form IMBH

→ Overall Goals

- Model dynamics of gas and DM at epoch of Pop III formation
- Cooling and heating rates via radiative heating
- Understand concepts of DM and its impact
- Connect with observations

Background Information

Introduction to the Teams

- → Research group from EXPLORE IV (January 2024 - April 2024)
- → Split big research group into two smaller groups
- → Work individually then come together and interface our results.

Minihalos and Miniquasars

Grackle Team

- → Finn Karstens
- → Aster Schnell

→ Dr. Laura Sagunski **Quasar Team**

- → Lauren Morley
- \rightarrow Dr. Sean Tulin

The Teams

The Grackle Team

- → Grackle is an open-sourced library designed for simulating chemical and thermal processes.
- \rightarrow Main goals
 - 1. Improve on the current SPHerical cooling rate using Grackle
 - 2. Determine new *radiative heating* rate
- \rightarrow Luminosity is the main connecting factor between the two teams

my_chemistry = chemistry_data()
my_chemistry.use_grackle = 1
my_chemistry.primordial_chemistry = 1

The Teams

The Quasar Team

- \rightarrow Main Goals
 - 1. Calculate Accretion Luminosity and Radiation Pressure.
 - 2. Calculate the Luminosity at *different shell positions*.
 - 3. Confirm *BH formation* in simulation
 - 4. Run high-end simulations on Canadian Supercomputer.
- → EXPLORE project: previously completed Goal 1
- → GREP project: aim to complete Goals 2-4

Theoretical Formula and Result - Luminosity

Dissipation \longrightarrow Shell Collapse \longrightarrow BH Formation

→ Accretion luminosity

 $L_{BH}(t) = \epsilon \dot{M}_{BH}(t)c^2$

- → Need to convert *discrete shell collapse* into *continuous* luminosity
- \rightarrow ϵ = radiative efficiency
- \rightarrow c = speed of light

L. Ciotti, J.P. Ostriker (2007)

The Research

Adding in DM interactions + Updating functions

- → DM interactions can be added in preparation of full simulations
- → Improvement of the Luminosity function.
 - Allows for improved numerical performance when the luminosity is continuous

 $\longrightarrow \land$

The Research

Theoretical Formula and Result - Radiation Pressure Acceleration

L. Ciotti, J.P. Ostriker (2007)

The Research

Confirmation that Radiation Pressure Acceleration works

- \rightarrow Black = DM shells
- → Blue = gas shells with radiation pressure
- → Red = gas shells without radiation pressure

→ Luminosity and Radiation Pressure are working!

The Research

Luminosity at different shell positions

- → Luminosity can be considered and its effects on radiative heating and cooling
- → Calculate luminosity at each shell position using formula below

$$\frac{L_{BH,photo}^{eff}(r)}{dr} = -4\pi r^2 H \quad \longleftarrow \quad H \propto 10^{-24} n\epsilon G_0 \ ergs \ cm^{-3} \ s^{-1}$$

→ Boundary condition where when r = 0, $L_{BH,photo}^{eff}(r) = L_{BH}$

The Research

Grackle Team Results and Summary

- → Cooling rates used to determine shell energy lost due to radiative processes
- → Depends on gas density, temperature or energy, and any heating

- → Constant at low luminosity
- → As luminosity increases, cooling rate increases at lower temperatures

Summary

- \rightarrow Revisiting Goals 1 & 2:
 - 1. Calculate Accretion Luminosity and Radiation Pressure.
 - 2. Calculate the Luminosity at **different shell positions**.
- → Luminosity and Radiation Pressure were successfully calculated and implemented into the SPHerical code.
- → Luminosity at different shell positions was successfully calculated and implemented into Grackle Code

Summary

Summary

- \rightarrow Revisiting Goals 3 & 4:
 - 3. Confirm **BH formation** in simulation
 - 4. Run **high-end simulations** on Canadian Supercomputer.
- → BH formation was confirmed
- → Simulations were ran with varying parameters on Canadian Supercomputer

Results - Radius vs Time

Results

Results - Collapsed Mass Vs Time

Results - Luminosity Vs Time

Next Steps

- → Improve on current simulation results
 - Run for longer and collapse more shells
 - Smooth out Luminosity function
- → Combine results together and run full simulation on Canadian Supercomputer
 - Vary DM parameters
- \rightarrow Analyze plots and see effect of DM on evolution
- \rightarrow Compare with Observations

