

SPHerical Dynamics of Miniquasars and Dark Matter Minihalos

Lauren Morley August 22, 2024

 In collaboration with: Finn Karstens, Aster Schnell, Prof. Dr. Laura Sagunski, and Dr. Sean Tulin

Introduction Lauren Morley

Table of Contents

- ➔ **Background Information**
- ➔ **The Teams**
	- ◆ **The Grackle Team**
	- **The Quasar Team**
- ➔ **The Research**
- ➔ **Summary**
- ➔ **Results**
- ➔ **Next Steps**

Image credit: Frenk & White, 2012

Table of Contents 2

What are Minihalos and Miniquasars?

- ➔ **Minihalos** are small Dark Matter (DM) halos that are the birthplace for the first stars (Population III)
	- \blacklozenge Mass $10^5 10^6$ Msol
	- Predicted to exist but *no observational evidence*
- ➔ **Miniquasars** are Quasar-like objects on an incredibly small scale
	- Predicted to form on Intermediate Mass Black Holes (IMBH) with accreting gas
	- *Radiative feedback:* energy released impacts surroundings

Image credit: NASA, ESA and J. Olmsted (STScI)

S. Tulin & L. Sagunski (2023)

Background Information **Lauren Morley** 3

DM Halo on Galactic Scales

Image credit: Astrobites.org Image credit: Frenk & White, 2012

Background Information Lauren Morley

Our Models

- ➔ **Self-Interacting Dark Matter (SIDM)**
	- Proposed to solve the *core-cusp problem*
	- Particles interact with each other through forces **other than gravity.**
	- Could be elastic (non dissipative) or inelastic (dissipative)

➔ **Role of SIDM in Minihalos**

- Puzzled on how Supermassive Black Holes (SMBH) grow so fast
- IMBH predicted to exist as intermediate step in growing **SMBH**
- Our Idea: from collapsing DM, not gas

S. Tulin, H. Yu (2017)

Background Information **Lauren Morley** 6 and 5 a

Our Theoretical Model

- ➔ Simulating dynamics of DM halo with gas as a series of **concentric shells**
	- Includes spherical symmetry
- ➔ **SPHerical** Python Package was utilized
	- Includes DM interactions, gas interactions, and radiative feedback

Background Information **Lauren Morley** 6 and 1.5 and 1.6 and 1

Motivation + Main Goals

➔ **Motivation**

- Want to test how formation of Pop III stars reacts with different DM parameters
	- What happens if both gas and DM collapse at epoch?
- Suspect system won't form Pop III stars, instead will form IMBH

➔ **Overall Goals**

- Model dynamics of gas and DM at epoch of Pop III formation
- Cooling and heating rates via radiative heating
- Understand concepts of DM and its impact
- Connect with observations

Introduction to the Teams

- \rightarrow Research group from EXPLORE IV (January 2024 - April 2024)
- \rightarrow Split big research group into **two smaller groups**
- \rightarrow Work individually then come together and interface our results.

Minihalos and Miniquasars

Grackle Team Quasar Team

- \rightarrow Finn Karstens
- \rightarrow Aster Schnell

 \rightarrow Dr. Laura Sagunski

- \rightarrow Lauren Morley
- \rightarrow Dr. Sean Tulin

The Teams and the Lauren Morley 8 and 2008 and 30

The Grackle Team

- ➔ Grackle is an **open-sourced library** designed for simulating chemical and thermal processes.
- \rightarrow Main goals
	- 1. Improve on the current SPHerical *cooling rate* using Grackle
	- 2. Determine new *radiative heating* rate
- \rightarrow Luminosity is the main connecting factor between the two teams

 my_{c} hemistry = chemistry_data() my_{c} chemistry.use_grackle = 1 my_chemistry.primordial_chemistry = 1

The Teams **Lauren Morley** 2008 (2008) 2012 12:38 AMERICAN EXTENDIBLY

The Quasar Team

- \rightarrow Main Goals
	- 1. Calculate *Accretion Luminosity* and *Radiation Pressure.*
	- 2. Calculate the Luminosity at *different shell positions*.
	- 3. Confirm *BH formation* in simulation
	- 4. Run *high-end simulations* on Canadian Supercomputer.
- ➔ EXPLORE project: previously completed Goal 1
- **→** GREP project: aim to complete Goals 2-4

Theoretical Formula and Result - Luminosity

Dissipation \longrightarrow Shell Collapse \longrightarrow BH Formation

 \rightarrow Accretion luminosity

 $L_{BH}(t) = \epsilon \dot{M}_{BH}(t)c^2$

- ➔ Need to convert *discrete shell collapse* into *continuous* luminosity
- ϵ = radiative efficiency
- \rightarrow c = speed of light

L. Ciotti, J.P. Ostriker (2007)

Adding in DM interactions + Updating functions

- \rightarrow DM interactions can be added in preparation of full simulations
- \rightarrow Improvement of the Luminosity function.
	- Allows for improved numerical performance when the luminosity is continuous

Theoretical Formula and Result - Radiation Pressure Acceleration

L. Ciotti, J.P. Ostriker (2007)

Confirmation that Radiation Pressure Acceleration works

- \rightarrow Black = DM shells
- ➔ Blue = gas shells **with** radiation pressure
- \rightarrow Red = gas shells without radiation pressure

 \rightarrow Luminosity and Radiation Pressure are working!

Luminosity at different shell positions

- \rightarrow Luminosity can be considered and its effects on radiative heating and cooling
- **→** Calculate luminosity at each shell position using formula below

 \blacklozenge $H \propto L_{BH, photo}^{eff}(r)$

$$
\frac{L_{BH,photo}^{eff}(r)}{dr} = -4\pi r^2 H \quad \longleftarrow \quad H \propto 10^{-24} n\epsilon G_0 \ ergs \ cm^{-3} \ s^{-1}
$$

 \rightarrow Boundary condition where when $r = 0$, $L_{BH, photo}^{eff}(r) = L_{BH}$

Grackle Team Results and Summary

- \rightarrow Cooling rates used to determine shell energy lost due to radiative processes
- **→** Depends on gas density, temperature or energy, and any heating

- \rightarrow Constant at low luminosity
- \rightarrow As luminosity increases, cooling rate increases at lower temperatures

Summary **Minihalos and Miniquasars** 16

Summary

- \rightarrow Revisiting Goals 1 & 2:
	- 1. Calculate **Accretion Luminosity** and **Radiation Pressure**.
	- 2. Calculate the Luminosity at **different shell positions**.
- **→** Luminosity and Radiation Pressure were **successfully calculated** and implemented into the SPHerical code.
- \rightarrow Luminosity at different shell positions was successfully calculated and implemented into Grackle Code

Summary **Minihalos** and Miniquasars

Summary

- \rightarrow Revisiting Goals 3 & 4:
	- 3. Confirm **BH formation** in simulation
	- 4. Run **high-end simulations** on Canadian Supercomputer.
- \rightarrow BH formation was confirmed
- \rightarrow Simulations were ran with varying parameters on Canadian Supercomputer

Results - Radius vs Time

Results **Minihalos and Miniquasars** 19

Results - Collapsed Mass Vs Time

Results **Minihalos and Miniquasars** 20

Results - Luminosity Vs Time

Results **Minihalos and Miniquasars** 21

Next Steps

- **→** Improve on current simulation results
	- Run for longer and collapse more shells
	- **Smooth out Luminosity function**
- **→** Combine results together and run full simulation on Canadian Supercomputer
	- Vary DM parameters
- **→** Analyze plots and see effect of DM on evolution
- \rightarrow Compare with Observations