Understanding the Role of Early Stars in the Formation and Evolution of Galaxies

A step towards understanding cosmic reionization

19-08-2024

Bipradeep Saha

MPIA, IISER-Kolkata

Supervised by - Dr. Rahul Kannan (York University)

Agenda

- 1. Research Background and Motivation
- 2. Problem under study
- 3. Methodology
- 4. Results
- 5. How is it relevant in the bigger picture?

Research background & motivation

[JWST](https://iopscience.iop.org/article/10.3847/1538-4357/acc588) is opening up new frontiers of cosmology by looking further than **HST**!

JWST Sees More Galaxies than Expected

February 9, 2024 . Physics 17, 23

The new JWST observatory is revealing far more bright galaxies in the early Universe than anyone predicted, and astrophysicists have more than one explanation for the puzzle.

James Webb Space Telescope sees early galaxies defying 'cosmic rulebook' of star formation

By Robert Lea published September 25, 2023 **News**

"It was like the galaxies had a rulebook that they followed - but astonishingly, this cosmic rulebook appears to have undergone a dramatic rewrite during the universe's infancy."

- ⤷ C. T. Donnan *et al.*, "The evolution of the galaxy UV luminosity function at redshifts *z* ∼ 8–15 from deep JWST and ground-based near-infrared imaging," [arXiv:2207.12356](http://arxiv.org/abs/2207.12356).
- ⤷ I. Labbé *et al.*, "A population of red candidate massive galaxies ∼600 Myr after the Big Bang," [Nature 616 \(2023\)](http://dx.doi.org/10.1038/s41586-023-05786-2).
- ⤷ P. Arrabal Haro *et al.*, "Confirmation and refutation of very luminous galaxies in the early Universe," [Nature 622 \(2023\)](http://dx.doi.org/10.1038/s41586-023-06521-7).
- ⤷ S. L. Finkelstein *et al.*, "The complete CEERS early Universe galaxy sample: A surprisingly slow evolution of the space density of bright galaxies at *z* ∼ 8.5–14.5," [arXiv:2311.04279](http://arxiv.org/abs/2311.04279).
- ⤷ G. Sun *et al.*, "Bursty star formation naturally explains the abundance of bright galaxies at cosmic dawn," [Astrophys.](http://dx.doi.org/10.3847/2041-8213/acf85a) J., [Lett. 955 \(2023\)](http://dx.doi.org/10.3847/2041-8213/acf85a).
- ⤷ A. Ferrara, "Super-early JWST galaxies, outflows and Lyman alpha visibility in the EoR," [arXiv:2310.12197](http://arxiv.org/abs/2310.12197).
- ⤷ A. Ferrara *et al.*, "On the stunning abundance of super-early, luminous galaxies revealed by *JWST*," [Mon.](http://dx.doi.org/10.1093/mnras/stad1095) [Not. R. Astron. Soc. 522 \(2023\)](http://dx.doi.org/10.1093/mnras/stad1095).

Research background & motivation

[JWST](https://iopscience.iop.org/article/10.3847/1538-4357/acc588) is opening up new frontiers of cosmology by looking further than **[HST](https://arxiv.org/abs/1603.03798)!**

One of the key problem on which JWST would be very useful is the problem of *reionization*.

Galaxies begin to change the gas around them

Areas of transformed gas expand

Clear universe, end of reionization

Problem Under Study

Problem:

- We don't know what happens during reionization !
- We don't have predictions for JWST !!

Currently Accepted Hypothesis:

Early Galaxies and accretion of matter into the black holes released enough energy to re-ionize the universe.

Problem to Investigate:

- How the early stars shaped the evolution of early galaxies?
- How much do PopIII stars contribute to reionization?

No observations available for the primordial universe.

Use High Resolution N-Body simulations in Cosmological settings to understand the role of the early stars in galaxy formation and evolution!

$$
\text{Cosmology}: \qquad H = H_0 \left[\Omega_0 a^{-3} + (1 - \Omega_0 - \Omega_\Lambda) a^{-2} + \Omega_\Lambda \right]^{1/2}
$$

$$
Gosmology: \qquad H = H_0 \left[\Omega_0 a^{-3} + (1 - \Omega_0 - \Omega_\Lambda) a^{-2} + \Omega_\Lambda \right]^{1/2}
$$

$$
\hat{\mathbf{v}} = \mathbf{v}/a,
$$

\nHydrodynamics
\n
$$
\hat{\mathbf{v}} = 4\pi G (\rho_{\text{total}} - \rho_{\text{mean}}), \quad \hat{\mathbf{v}} = -\frac{\nabla \Phi}{a^2} - \frac{\dot{a}}{a} \mathbf{v},
$$

\n
$$
\frac{D\rho}{Dt} = -\rho \nabla \cdot \vec{v} \; ; \; \frac{D\vec{v}}{Dt} = -\frac{1}{\rho} \nabla P \; ; \; \frac{De}{Dt} = -\frac{1}{\rho} \nabla \cdot P \vec{v}
$$

Methods: *What is needed for simulating a realistic galaxy?*

Thermochemistry: AREPO - RT ([Kannan et.al 2019](https://arxiv.org/pdf/1804.01987.pdf)**)**

We are interested in single scattering regime: a particular photon interacts with the surrounding medium only once. We discretize the frequency into different bins *i*

$$
\frac{\partial N_{\gamma}^{i}}{\partial t} = -\tilde{c} N_{\gamma}^{i} \left(\sum_{j} n_{j} \bar{\sigma}_{ij} + \kappa_{i} \rho \right) + \sum_{j} s_{ij} \begin{vmatrix} \frac{\partial N_{\gamma}^{i}}{\partial t} + \sum_{j} \frac{1}{\partial t} d \nu \int_{\mu_{i}} \{1, n, n \otimes n\} I_{\nu} d\Omega \\ \frac{\partial \mathbf{F}_{\gamma}^{i}}{\partial t} = -\tilde{c} \mathbf{F}_{\gamma}^{i} \left(\sum_{j} n_{j} \bar{\sigma}_{ij} + \kappa_{i} \rho \right) \end{vmatrix}
$$
 $\bar{\sigma}_{ij} = \text{Mean Ionization Cross Section}$
\n $s_{ij} = \text{Recombination Radiation}$

The species are coupled with this recombination radiation term!

Thermochemistry ([Kannan et.al 2019](https://arxiv.org/pdf/1804.01987.pdf), [Kannan et. al 2020,](https://academic.oup.com/mnras/article/499/4/5732/5932323) [Gnedin et. al 2011](https://iopscience.iop.org/article/10.1088/0004-637X/728/2/88))

For early stars, the species that we are interested in tracking are

 \triangleright Current cosmological simulations don't consider primordial universe H2 thermochemistry which becomes extremely relevant for PopIII stars.

Thermochemistry ([Kannan et.al 2019](https://arxiv.org/pdf/1804.01987.pdf), [Kannan et. al 2020,](https://academic.oup.com/mnras/article/499/4/5732/5932323) [Gnedin et. al 2011](https://iopscience.iop.org/article/10.1088/0004-637X/728/2/88))

For early stars, the species that we are interested in tracking are [HI, HII, $H_2, H_2^+, H^-, HeI, HeII, HeIII$]

- \triangleright Current cosmological simulations don't consider primordial universe H2 thermochemistry which becomes extremely relevant for PopIII stars.
- We are develop a more accurate thermochemistry module by adding additional gas phase reaction to the existing Thermochemistry module.
	- The evolution of ionic species can be written as:

$$
\frac{\partial x}{\partial t} = C - Dx
$$

Thermochemistry ([Kannan et.al 2019](https://arxiv.org/pdf/1804.01987.pdf), [Kannan et. al 2020,](https://academic.oup.com/mnras/article/499/4/5732/5932323) [Gnedin et. al 2011](https://iopscience.iop.org/article/10.1088/0004-637X/728/2/88))

The evolution of ionic species can be written as:

$$
\frac{\partial x}{\partial t} = C - Dx
$$

$$
\begin{split}\n\dot{\mathcal{M}}_{\mathrm{H}_{2}^{+}} &= -\Gamma_{\mathrm{B}} n_{\mathrm{H}_{2}^{+}} - \Gamma_{\mathrm{C}} n_{\mathrm{H}_{2}^{+}} + \Gamma_{\mathrm{D}} n_{\mathrm{H}_{2}} - k_{4} n_{\mathrm{H}_{1}} n_{\mathrm{H}_{2}^{+}} - k_{6} n_{e} n_{\mathrm{H}_{2}^{+}} - k_{21} n_{\mathrm{H}^{-}} n_{\mathrm{H}_{2}^{+}} - k_{22} n_{\mathrm{H}^{-}} n_{\mathrm{H}_{2}^{+}} \\
&\quad + k_{3} n_{\mathrm{H}\mathrm{I}} n_{\mathrm{H}\mathrm{II}} + k_{7} n_{\mathrm{H}_{2}} n_{\mathrm{H}\mathrm{II}} + k_{16} n_{\mathrm{H}\mathrm{II}} n_{\mathrm{H}^{-}} + k_{25} n_{\mathrm{H}_{2}} n_{\mathrm{He}\mathrm{II}} \,, \\
\dot{\mathcal{M}}_{\mathrm{H}^{-}} &= -\Gamma_{\mathrm{A}} n_{\mathrm{H}^{-}} - k_{2} n_{\mathrm{H}\mathrm{I}} n_{\mathrm{H}^{-}} - k_{5} n_{\mathrm{H}} n_{\mathrm{H}^{-}} - k_{14} n_{e} n_{\mathrm{H}^{-}} - k_{15} n_{\mathrm{H}_{1}} n_{\mathrm{H}^{-}} - k_{16} n_{\mathrm{H}_{\mathrm{II}}} n_{\mathrm{H}^{-}} \\
&\quad - k_{21} n_{\mathrm{H}_{2}^{+}} n_{\mathrm{H}^{-}} - k_{22} n_{\mathrm{H}_{2}^{+}} n_{\mathrm{H}^{-}} - k_{28} n_{\mathrm{He}} n_{\mathrm{H}^{-}} - k_{29} n_{\mathrm{He}} n_{\mathrm{H}^{-}} + k_{1} n_{e} n_{\mathrm{H}_{1}} + k_{23} n_{e} n_{\mathrm{H}_{2}} \,,\n\end{split}
$$

Thermochemistry ([Kannan et.al 2019](https://arxiv.org/pdf/1804.01987.pdf), [Kannan et. al 2020,](https://academic.oup.com/mnras/article/499/4/5732/5932323) [Gnedin et. al 2011](https://iopscience.iop.org/article/10.1088/0004-637X/728/2/88))

The evolution of ionic species can be written as:

$$
\frac{\partial x}{\partial t} = C - Dx
$$

$$
\begin{split}\n\mathcal{M}_{\text{HI}} &= \Gamma_{\text{A}} n_{\text{H}^{-}} + \Gamma_{\text{B}} n_{\text{H}^{+}_{2}} + 2 \Gamma_{\text{EM}} n_{\text{H}_{2}} - k_{1} n_{e} n_{\text{H}_{1}} - k_{2} n_{\text{H}^{-}} n_{\text{HI}} - k_{3} n_{\text{HII}} n_{\text{HI}} \\
&\quad - k_{4} n_{\text{H}^{+}_{2}} n_{\text{H}_{1}} - k_{26} n_{\text{He}} n_{\text{HI}} - 2 k_{30} n_{\text{HI}}^{3} - 2 k_{31} n_{\text{HI}}^{2} n_{\text{H}_{2}} - 2 k_{32} n_{\text{HI}}^{2} n_{\text{HeI}} + 2 k_{5} n_{\text{HII}} n_{\text{H}^{-}} \\
&\quad + 2 k_{6} n_{e} n_{\text{H}^{+}_{2}} + k_{7} n_{\text{H}_{2}} n_{\text{HII}} + 2 k_{8} n_{e} n_{\text{H}_{2}} + 2 k_{9} n_{\text{HII}} n_{\text{H}_{2}} + 2 k_{10} n_{\text{H}_{2}} n_{\text{H}_{2}} + 2 k_{11} n_{\text{HeI}} n_{\text{H}_{2}} \\
&\quad + k_{14} n_{e} n_{\text{H}^{-}} + k_{15} n_{\text{HII}} n_{\text{H}^{-}} + k_{21} n_{\text{H}^{+}_{2}} n_{\text{H}^{-}} + 3 k_{22} n_{\text{H}^{-}} n_{\text{H}^{+}_{2}} + k_{23} n_{e} n_{\text{H}_{2}} + k_{24} n_{\text{HeII}} n_{\text{H}_{2}} \\
&\quad + k_{27} n_{\text{He}} n_{\text{HII}} + k_{28} n_{\text{HeII}} n_{\text{H}^{-}} + k_{29} n_{\text{HeI}} n_{\text{H}^{-}} + \alpha_{\text{HII}} n_{\text{HII}} n_{e} - \sigma_{\text{eHI}} n_{\text{HII}} n_{e} - \Gamma_{\text{HII}} n_{\text{HII}} \,, \\
&\quad \mathcal{M}_{\text{HII}} &= \Gamma_{\text{B}} n_{\text{H}^{+}_{2}} + 2 \Gamma_{\text{C}} n_{\
$$

Simplification:

- > Abundances of H₂⁺and H⁻ are always extremely small in cosmological settings, so that they can always be assumed to be in the kinetic equilibrium
- ➢ Neglecting terms involving *k21*, *k22* as it is ∝ *nH− nH2+*
- \triangleright Ignore inter-species terms i.e reactions between H and He
- \triangleright Use closure relations

$$
x_{\rm HI} = 1 - x_{\rm HII} - 2x_{\rm H_2} \,,
$$

$$
x_{\rm HeI} = 1 - x_{\rm HeII} - x_{\rm HeIII} \,,
$$

Methods: Thermochemistry ([Kannan et.al 2019,](https://arxiv.org/pdf/1804.01987.pdf) [Kannan et. al 2020,](https://academic.oup.com/mnras/article/499/4/5732/5932323) [Gnedin et. al 2011](https://iopscience.iop.org/article/10.1088/0004-637X/728/2/88)) **Internal Energy:**

$$
\Lambda_{\text{tot}} = \Lambda_p \left(n_j, N_{\gamma}^i, T \right) + \frac{Z}{Z_{\odot}} \Lambda_M(T, \rho, z) + \Lambda_{\text{PE}} \left(D, T, N_{\gamma}^{\text{FUV}} \right) + \Lambda_p \left(\rho, T, D, N_{\gamma}^{\text{IR}} \right)
$$

$$
\begin{aligned}\n\dot{\mathcal{M}}_{\text{Internal energy}} &= \mathfrak{h}_{\text{HI}} n_{\text{HI}} + \mathfrak{h}_{\text{HeII}} n_{\text{HeII}} + \mathfrak{h}_{\text{HeII}} n_{\text{HeII}} + \mathfrak{h}_{\text{H}_2} n_{\text{H}_2} - \mathcal{C}_M + \mathcal{C}_{\text{PE}} \\
&\quad - \mathcal{C}_D - \Lambda (n \to 0)_{\text{H}_2 \text{HI}} n_{\text{H}_2} n_{\text{HI}} - \Lambda (n \to 0)_{\text{H}_2 \text{H}_2} n_{\text{H}_2}^2 \\
&\quad - \Lambda_{\text{H}_2^+ e} n_{\text{H}_2^+} n_e - \Lambda_{\text{H}_2^+ \text{HI}} n_{\text{H}_2^+} n_{\text{HI}} - \Lambda_{\text{Inverse Compton Cooling}} n_e\n\end{aligned}
$$

Methods: Thermochemistry ([Kannan et.al 2019,](https://arxiv.org/pdf/1804.01987.pdf) [Kannan et. al 2020,](https://academic.oup.com/mnras/article/499/4/5732/5932323) [Gnedin et. al 2011](https://iopscience.iop.org/article/10.1088/0004-637X/728/2/88)) **Internal Energy:**

$$
\Lambda_{\text{tot}} = \Lambda_p \left(n_j, N_\gamma^i, T \right) + \frac{Z}{Z_\odot} \Lambda_M(T, \rho, z) + \Lambda_{\text{PE}} \left(D, T, N_\gamma^{\text{FUV}} \right) + \Lambda_p \left(\rho, T, D, N_\gamma^{\text{IR}} \right)
$$

 $M_{\text{Internal energy}} = \mathfrak{h}_{\text{HI}} n_{\text{HI}} + \mathfrak{h}_{\text{HeI}} n_{\text{HeI}} + \mathfrak{h}_{\text{HeII}} n_{\text{HeII}} + \mathfrak{h}_{\text{H}_2} n_{\text{H}_2} - \mathcal{C}_M + \mathcal{C}_{\text{PE}}$ $-\mathcal{C}_{D} - \Lambda(n \to 0)_{H_2H_1} n_{H_2} n_{H_1} - \Lambda(n \to 0)_{H_2H_2} n_{H_2}^2$ $-\fbox{$\Lambda_{\rm H_2^+e}n_{\rm H_2^+}n_e-\Lambda_{\rm H_2^+HI}n_{\rm H_2^+}n_{\rm HI}$}-\Lambda_{\rm Inverse\ Compton\ Cooling}n_e$

Additional cooling at low temperatures that becomes very important for the primordial metal free gas See: [Glover & Abel \(2008\)](https://academic.oup.com/mnras/article/388/4/1627/981339)

Methods: Thermochemistry ([Kannan et.al 2019,](https://arxiv.org/pdf/1804.01987.pdf) [Kannan et. al 2020,](https://academic.oup.com/mnras/article/499/4/5732/5932323) [Gnedin et. al 2011](https://iopscience.iop.org/article/10.1088/0004-637X/728/2/88)) **Internal Energy:**

Overview of Thermochemistry network:

Solve the thermochemistry network using closure relations and update the species fractions, internal energy and photon density and flux: we use a *semi - implicit* scheme when change in Temperature or ionic species density is less than 10% otherwise we numerically solve the differential equation using **SUNDIALS CVODE** solver.

In addition to changing ionization state of different species, photons can also heat the surrounding through photo-heating - we account for photo-heating.

Additionally there will be momentum injection due to photon absorption and here also we see coupling of the radiation and matter fields through source terms in hydrodynamic equations.

Testing the thermochemistry network:

O star ($T = 4.3 \times 10^3$ K) at the centre of a box in a pure molecular medium.

Testing the thermochemistry network:

Testing the thermochemistry network:

Radiation field of PopIII stars : [\(Mirouh et. al 2023,](https://arxiv.org/pdf/2307.02678.pdf) [Jones et. al 2022\)](https://doi.org/10.1093/mnras/stac2049)

PopIII stars are purely made up of Hydrogen and Helium, and have short lifetimes compared to metal rich counterparts.

The radiation field of a star depends on two important factors: T_{eff} and *log(g)*.

Traditionally there are two approaches to get the radiation field

- Model the spectrum as black body
- Explicitly solve the radiative transfer of the stellar atmosphere

Radiation field of PopIII stars : [\(Mirouh et. al 2023,](https://arxiv.org/pdf/2307.02678.pdf) [Jones et. al 2022\)](https://doi.org/10.1093/mnras/stac2049)

PopIII stars are purely made up of Hydrogen and Helium, and have short lifetimes compared to metal rich counterparts.

The radiation field of a star depends on two important factors: T_{eff} and *log(g)*.

Traditionally there are two approaches to get the radiation field

- Model the spectrum as black body
- ✓ Explicitly solve the radiative transfer of the stellar atmosphere

We use the **Tlusty** [\(Hubney and Lanz\)](https://arxiv.org/pdf/1706.01859.pdf) and **MESA** ([Paxton et. al 2011](https://ui.adsabs.harvard.edu/abs/2011ApJS..192....3P/abstract))

Overview

Model 100 Metal Free stars in MESA

Stars are irrotational and non-convective stars & initialized with BBN proportions of H, He

Compute stellar spectrum on a grid for the metal free stars

Combine evolutionary history to obtain IMF averaged spectra

Standard spectra: Bruzual G., Charlot S., 2003.

Combine evolutionary history to obtain IMF averaged spectra

Feedback from PopIII stars : ([Heger & Woosley 2002](http://dx.doi.org/10.1086/338487), [Heger & Woosley 2010](https://iopscience.iop.org/article/10.1088/0004-637X/724/1/341))

PopIII stars can die as supernova or black holes, and they inject large amount of energy into the interstellar medium

Methods: Feedback from PopIII stars: [\(Heger & Woosley 2002,](http://dx.doi.org/10.1086/338487) [Heger & Woosley 2010\)](https://iopscience.iop.org/article/10.1088/0004-637X/724/1/341)

PopIII stars can die as supernova, and they inject large amount of energy into the ISM

$$
M_{\star} \in [10 - 100] \ M_{\odot} \rightarrow 1.2 \times 10^{51} \ \text{ergs}
$$

 $M_{\star} \in [140 - 260]$ M_{\odot}

$$
E_{\rm PISN} = 10^{51} \times \left[5.0 + 1.304 \left(\frac{M_{\rm He}}{M_{\odot}} - 64\right)\right] \text{ ergs}
$$

$$
\boxed{E_{\rm SNII}=10^{51}\;{\rm ergs}}
$$

Methods: Feedback from PopIII stars: [\(Heger & Woosley 2002,](http://dx.doi.org/10.1086/338487) [Heger & Woosley 2010\)](https://iopscience.iop.org/article/10.1088/0004-637X/724/1/341)

PopIII stars can die as supernova, and they inject large amount of energy into the ISM

$$
M_{\star} \in [10 - 100] \ M_{\odot} \rightarrow 1.2 \times 10^{51} \ \text{ergs}
$$

 $M_{\star} \in [140 - 260]$ M_{\odot}

$$
\mathcal{E}_{\text{PISN}} = 10^{51} \times \left[5.0 + 1.304 \left(\frac{M_{\text{He}}}{M_{\odot}} - 64\right)\right] \text{ ergs}
$$

$$
\boxed{E_{\rm SNII} = 10^{51} \text{ ergs}}
$$

$$
\Delta M_i(t, \Delta t) = \int_{\mathcal{M}(t+\Delta t)}^{\mathcal{M}(t)} \chi_{i,\text{enrich}}(M)\Phi(M) dM
$$

Now, we run cosmological zoom-in simulations of galaxies with(out) the PopIII physics

- AREPO-RT [Kannan et. al, 2019](https://academic.oup.com/mnras/article/485/1/117/5303742?login=true), [Springel et. al, 2010](https://academic.oup.com/mnras/article/401/2/791/1147356?login=true) for Gravity and RHD.
- IC from Thesan box (Kannan et. al, in Prep)
- Cosmology from Planck 2018
- Galaxy formation [Marinacci et. al, 2019](http://dx.doi.org/10.1093/mnras/stz2391), [Kannan et. al, 2020](https://academic.oup.com/mnras/article/499/4/5732/5932323)

Properties of the central halo:

Properties of the central halo:

Properties of the central halo:

Properties of the central halo:

Energetic PopIII SNe results in stronger feedback that delays star formation and slower enrichment of gas

Ionization properties:

Ionization properties:

Conclusion

- Developed an accurate Molecular Hydrogen Thermochemistry network very relevant for the early universe
- Created IMF averaged stellar spectra for PopIII stars with high fidelity
- Developed metal enrichment and feedback prescription for PopIII stars.
- Found that PopIII stars can form at $z \sim 15.45$
- PopIII stars decreases SFR in Halos, Reduces Gas Metallicity in CGM
- Found strong evidence that PopIII stars **can** affect the onset of reionization !

Acknowledgement

- Dr. Rahul Kannan (PI)
- Dr. Giovanni Mirrouh, for useful discussion on stellar evolution.
- Mr. Thomas Gessey Jones, for insightful discussions on PopIII spectra.
- This research was enabled in part by support provided by ACENET, Calcul Québec, Compute Ontario, and the Digital Research Alliance of Canada (alliance can.ca)
- My parents and friends, for always supporting me!

Photo heating:

Photons in addition to changing the ionization state, they also heat the gas. The excess energy is taken away by the photoelectrons.

$$
\mathcal{H}=\sum_j n_j \Gamma_j.
$$

(Total photo-heating rate)

$$
\Gamma_j = \sum_i \int_{\nu_{i1}}^{\nu_{i2}} \frac{4\pi J_\nu}{h\nu} \sigma_{j_\nu} \left(h\nu - h\nu_{tj}\right) d\nu
$$

Change of momentum:

The radiation pressure term due to photon absorption is added as a source term in the momentum conservation equation of hydrodynamics and is given by

$$
\frac{\partial \rho v}{\partial t} = \frac{1}{c} \sum_{i} F_{\gamma}^{i} \left(\sum_{j} n_{j} \bar{\sigma}_{ij} p_{ij} + \kappa_{i} \rho e_{i} \right)
$$

$$
p_{ij} = \frac{\int_{\nu_{i1}}^{\nu_{i2}} 4\pi J_{\nu} \sigma_{j_{\nu}} d\nu}{\int_{\nu_{i1}}^{\nu_{i2}} \frac{4\pi J_{\nu}}{h\nu} \sigma_{j_{\nu}} d\nu}.
$$

Combine evolutionary history to obtain IMF averaged spectra

(a) Lifetime emission of 10 M_{\odot} star.

(b) Lifetime emission of 100 M_{\odot} star.