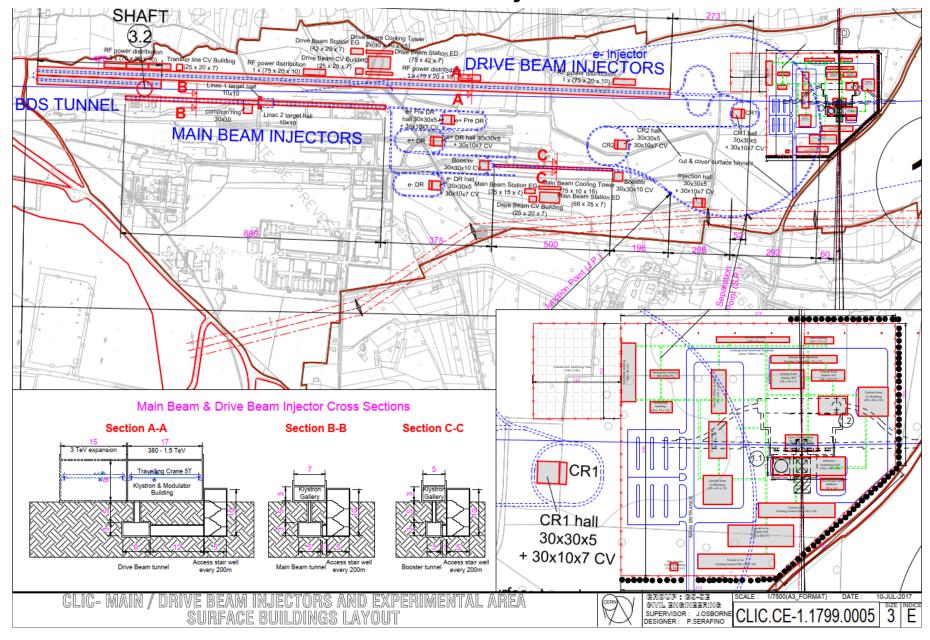

CLIC layout 380 GeV

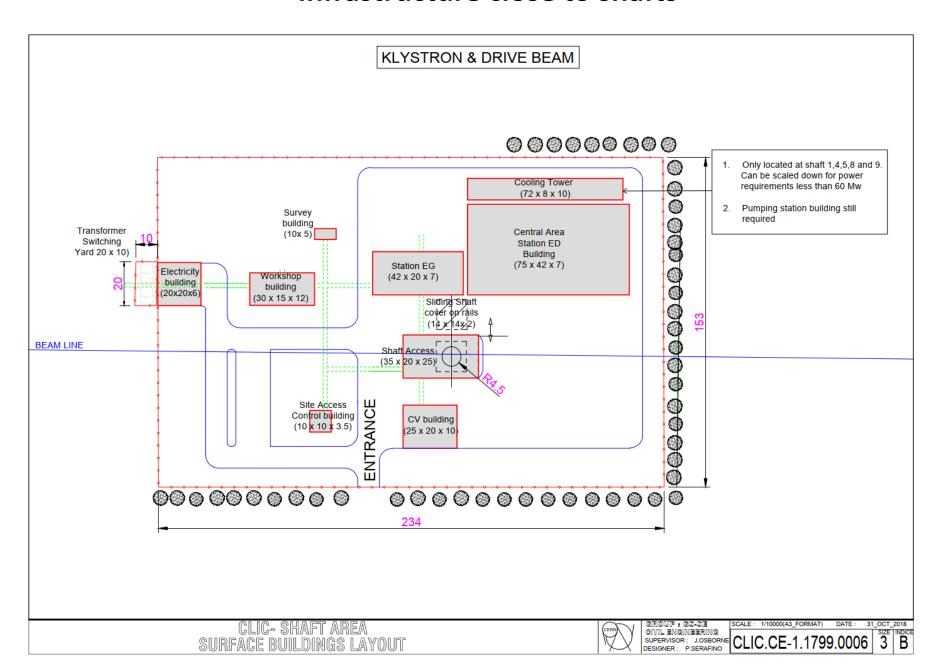
Drive Beam + Injector

Main Beam Injector Complex

Injector infrastructure

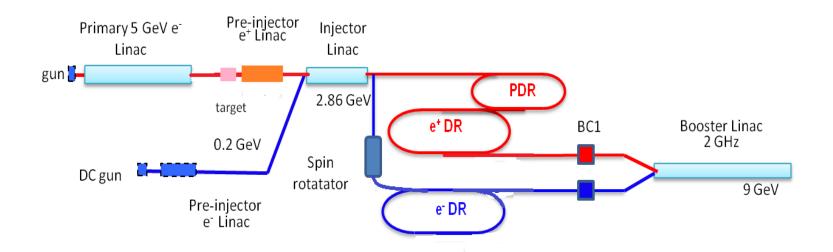


INJECTORS TUNNELS	BRIVE BEAM INJECTORS COMPLEX						MAIN BEAM INJECTORS COMPLEX							COMMON FINAL TRANSF TRANSFER ((From Separa						
	LINAC	DL1	DL2	CR 1	CR 2	Transfer Lines		Preliminary e- beam LINAC	l				e+/e- DR	SpinRotator +BC1+TD	Booster LINAC		TUNNEL		e- TT e+ TT	
Length (l) m	2140 +48+420	227	307	292	438	518	239	400	50	50	482	384	2x433	2 x 313	500	216	277	945	1449	2196
Section (w x h) m	6 x 3	4 x 3	4 x 3	4 x 3	4 x 3	4 x 3	4 x 3	4 x 3	5 x 3	30 x 3	4 x 3	4 x 3	4 x 3	4x 3	4 x 3	4 x 3	6 x 3	4 x 3	Ø 3.8	Ø 3.8
Surface Buildings (l x w x h) m	2560 x 30 xh 9	-	-	30x30 x h 5	30x30 x h 5	-	-	400 x 7 x h 3	ComptonR. 30x30x h3			30x30 xh5(x2)		-	500 x 5 x h 3	_	In ject.Hall 30x30xh5	del	ta e-/e	e+ = 198m

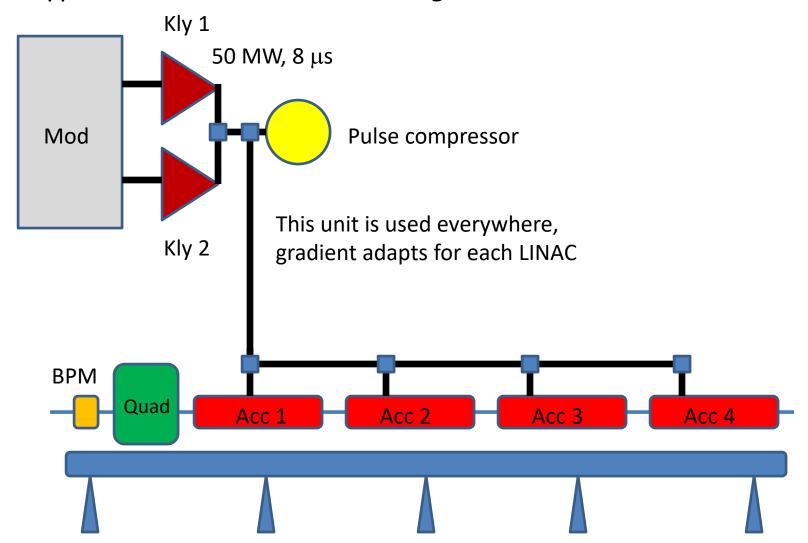

Group : GS-SE Civil Engineering

SUPERVISOR: J.OSBORNE CLIC.CE-1.1799.0002

Zoom into the injectors


Infrastructure close to shafts

Schematic layout



Rf-module cost model

Typical 2 GHz rf module including accelerators and beam line

Generic transfer line

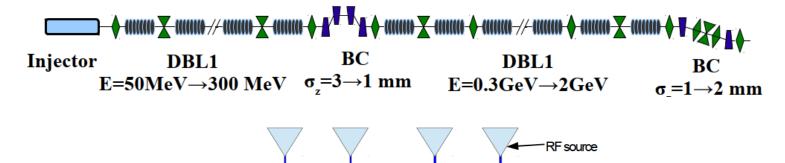
Infra structure ?
Cooling, ventilation, cable trays ?

Cost per linac updated 380 GeV

Bunch										
Bunch										
Bunch										
charge	rf pulse	structure	Loaded gradient	Configurati on (structure/		pulse compres	No of		Energy gain per	
(10^9)	length (ns)	(MW)	(MV/m)	2 klystrons)	modules	sor gain	es	Length (m)	module	Cost
6	600	75	16.7	4	2	4.4	8.0	15.6	100.2	4910
20	600	87	8.3	4	6	4.4	17.0	22.1	33.2	14730
7	2x600	77	17	4	26	3.7	105.0	204.75	102	63830
7	600	90	19	4	44	4.4	176.0	343.2	114	108020
	2x600	75	18 2	4	56	3 7	225.0	438 75	109 2	137480
	20 7	20 600 7 2x600 7 600	20 600 87 7 2x600 77 7 600 90	20 600 87 8.3 7 2x600 77 17 7 600 90 19	20 600 87 8.3 4 7 2x600 77 17 4 7 600 90 19 4	20 600 87 8.3 4 6 7 2x600 77 17 4 26 7 600 90 19 4 44	20 600 87 8.3 4 6 4.4 7 2x600 77 17 4 26 3.7 7 600 90 19 4 44 4.4	20 600 87 8.3 4 6 4.4 17.0 7 2x600 77 17 4 26 3.7 105.0 7 600 90 19 4 44 4.4 176.0	20 600 87 8.3 4 6 4.4 17.0 22.1 7 2x600 77 17 4 26 3.7 105.0 204.75 7 600 90 19 4 44 4.4 176.0 343.2	20 600 87 8.3 4 6 4.4 17.0 22.1 33.2 7 2x600 77 17 4 26 3.7 105.0 204.75 102 7 600 90 19 4 44 4.4 176.0 343.2 114

Total injector costs in PBS

	PBS 38	0 GeV PP			Generated
cmd	wu	pbs	pbs description	relative start	duration
cmd	Mxx			pv	unit
cmd	Pxx			pv	unit
	wu	1.1.1.	Thermoionic gun unpolarized e-	0y	0y
	MP			1000000	CHF
	wu	1.1.2.	Primary e- Beam Linac for e+	0y	0y
	MP			108020	kCHF
	wu	1.1.3.	e-/e+ Target	0y	0y
	MP			7000000	CHF
	wu	1.1.4.	Pre-injector Linac for e+	0y	0y
	MP			14730	kCHF
	wu	1.1.5.	DC gun Polarised e-	Оу	0y
	MP			300000	CHF
	wu	1.1.6.	Pre-injector Linac for e-	Oy	Оу
	MP			4910	kCHF
	wu	1.1.7.	Injector Linac	0y	0y
	MP			63830	kCHF
	wu	1.1.8.	Bunching System e- for e+	0y	0y
	MP			500000	CHF
	wu	1.1.9.	Transfer Lines e- to Single Targets Station	0y	0y
	MP			100000	CHF
	wu	1.1.10.	Transfer Lines e+ to Injector Linac	0y	0y
	MP		_	100000	CHF
	wu	1.1.11.	Bunching System e- for e-	0y	0y
	MP			300000	CHF
	wu	1.1.12.	Pre-injector to Injector Linac Transfer Line	Oy	0y
	MP			100000	CHF
	wu	1.1.14.	Spin Rotator e- before PDR	Оу	Oy
	MP			500000	CHF
			Booster linac		


Drive Beam Linac and Injector

Avni Aksoy, CLIC WS 2018

Beam Pipe

Quadrupole

Corrector

Sh.S. Hajari et al. / Nuclear Instruments and Methods in Physics Research A 799 (2015) 172–186

Structure

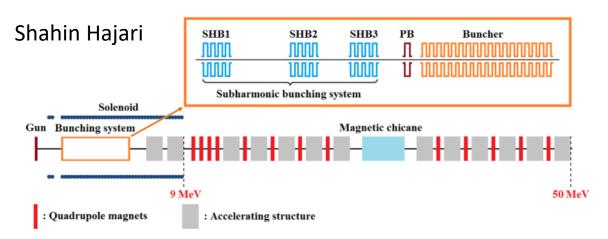


Fig. 6. The general layout of the injector complex.

Drive Beam Injector and LINAC cost

- Drive Beam Linac uses 470 RF stations (459+ 11 spares), each one powers one structure
- We have 200 quadrupoles, correctors and BPM's
- The injector is costed as a lump sum

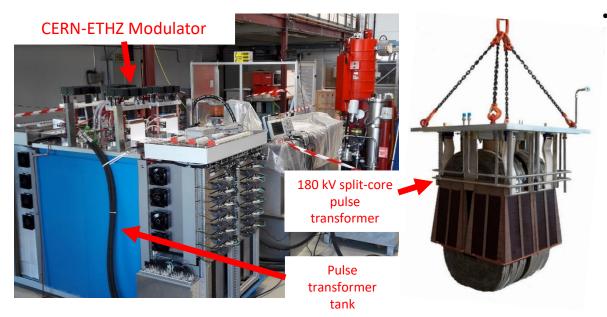
DB-Injector:	1 x	40 MCHF
L-band Klystron (MBK):	470 x	380 kCHF
Modulator:	470 x	370 kCHF
LLRF:	470 x	50 kCHF
Acc-structure	470 x	250 kCHF
Waveguides	470 x	30 kCHF
Magnet system:	200 x	50 kCHF
Powering:	200 x	18 kCHF
BI:	200 x	15 kCHF
Vacuum:	470 x	43 kCHF

Klystron and modulators

Unified approach for all systems:

- -Bottom up cost model for klystrons (O. Brunner) benchmarked with known prices and discussed with Industry to determine prototype price.
- -Apply learning curve of 0.92 for number of units
- -Determine average unit price.

Klystron	L-band	2 GHz	X-band
Prototype price	685 k	454 k	595k
Number of units	470	300	5800
Average price	380 k	260 k	240 k (see Carlo's talk)


Very similar for modulators, learning curve 0.92 based on Industry quotation

Unit price L-band (470 units): 370 kCHF

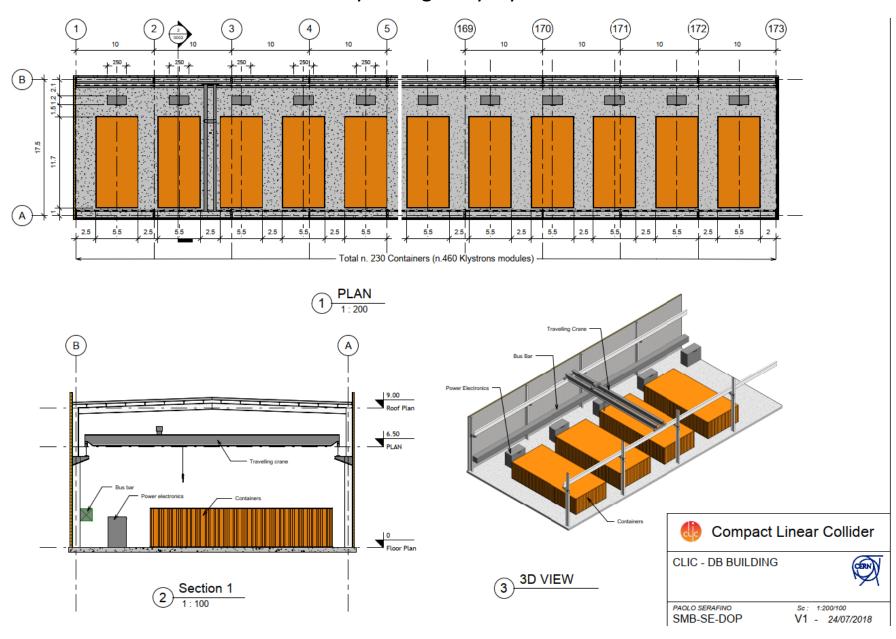
Unit price 2 GHz (150 units): 420 kCHF

Klystron modulator R&D

- CERN-ETHZ collaboration for design & delivery of a CLIC's Drive Beam klystron modulator
- Modulator installed, tested and ready for commissioning with klystron in building 112
- World première for precise 180 kV 30 MW pulse with 3μs rise/fall times & a "long" flat top (150μs)!
- Pulse stability better than 0.1 %!
- Collaboration with ETHZ successfully ended

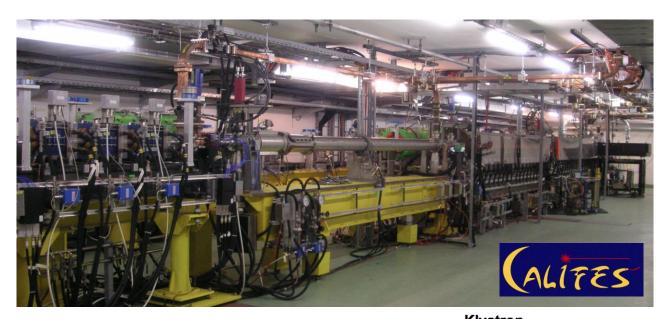
4 years of R&D studies achievements:

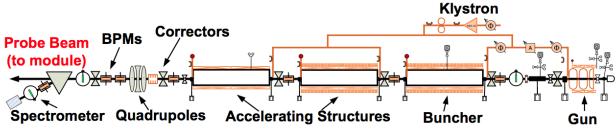
- Feasibility to create voltage pulse verified
- Solutions found to decouple 39 GW of pulsed power from electrical grid
- Optimal number of powering sectors found (For civil engineering)
- Optimal grid layout for power distribution proposed
- Proposal of a new very high repeatable / precise measuring system for high voltage pulses
- Discovery of excellent R&D partners in Canada, UK, Italy, & Switzerland!


Klystron Test Stand

Location: CERN Bldg: 112

DB LINAC klystron gallery layout


Typical injector modulator/klystron system



Contacted company for input to this study (Integrated system value or material breakdown)

Example of an injector unit

Example of a CLIC main linac module (see Benno talk)

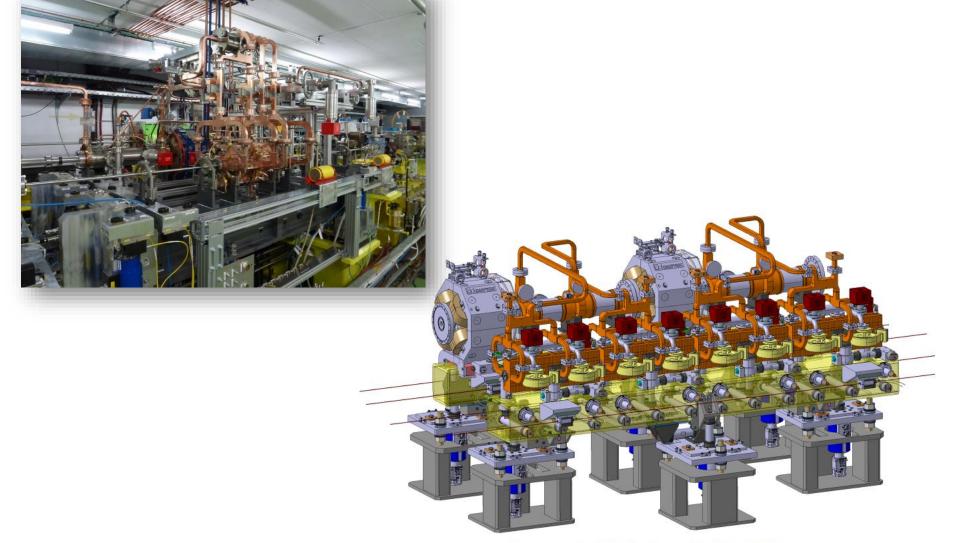


Figure 2: A CLIC Two Beam Module (TBM)

CLIC klystron base module

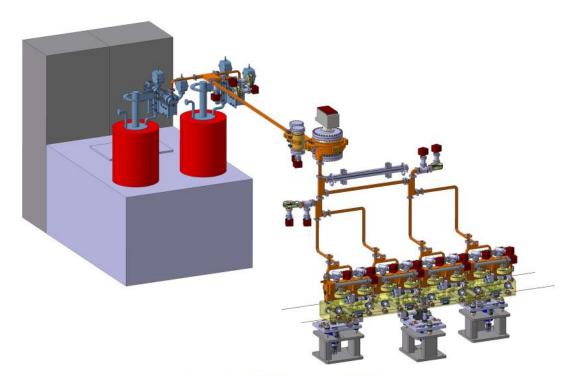


Figure 3: A CLIC Klystron Module

Discussion

- We would like to break down the machine in several sectors with a length and a cross-section, will generate table (see preliminary example below)
- Will provide data of main building blocks either per meter or per unit and number of units.
- Attention some updates needed with respect to shown data

Drawing 1.17999.0002	Туре	Length (m)	Dimension	CE	Shafts and caverns	Surface buildings	Materials	Comments
		(all to finalised)	(to be checked)					
								All CE covered in
	ML	7000	5.6	Done	Included in studies made	At shafts and coll. point?	Specify (include turn around)	earlier studies, check surface buildings
					Included in studies			All CE covered in
	BDS	4000	5.6	Done	made		Specify	earlier studies
					Included in studies			Attempt to provide overall material
	Detector(s)	NA		Cavern done	made	Surface building?	Specify	breakdown
DRIVE BEAM INJECTOR	DB	2300	Cut out, give dim	Cut out and building	NA	30x9	Specify	On surface
COMPLEX AND								Understand surface
TRANSFER TO ML	DL and CR	1100	Cut out?, 4x3?	Cut out? Buildings?	NA	Surface building?	Specify	or cut out
TUNNEL	DB transfers							Surfce/cut out and
	until ML tunnel	4500	4x3 and then down	Cut out? Transfer tunnel	NA	Surface building?	Specify	then transfer tunnel
	Injectors "active"	900	Surface buildings	Buildings	NA	Surface building	Specify	Buildings (no cut out?)
MAIN BEAM INJECTOR COMPLEX	Transfer to ML tunnel	3000	4x3 and then down	Same transfer tunnels as DB	NA	Surface building?	Specify	Surfce/cut out and then transfer tunnel
	DR	1200	Cut out?, 4x3	Cut out and/or building	NA	Surface building?	Specify	Building or cut out