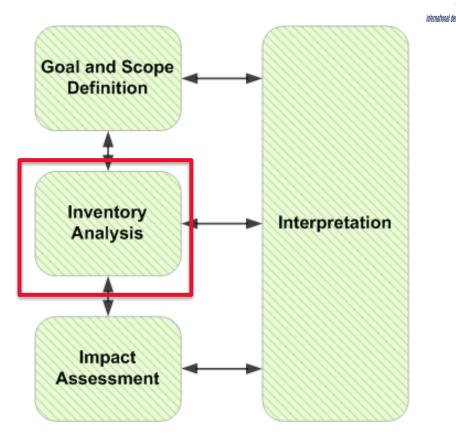
International Development Team

LCI Input to LCA Studies for ILC/CLIC Benno List, DESY LCA Phase 2 Workshop Apr 9, 2024



Life Cycle Assessment Structure

 Inventory Analysis: Materials, Energy, waste, production process -> domain specific

-> input from accelerator, detector and CFS experts, i.e. **us**

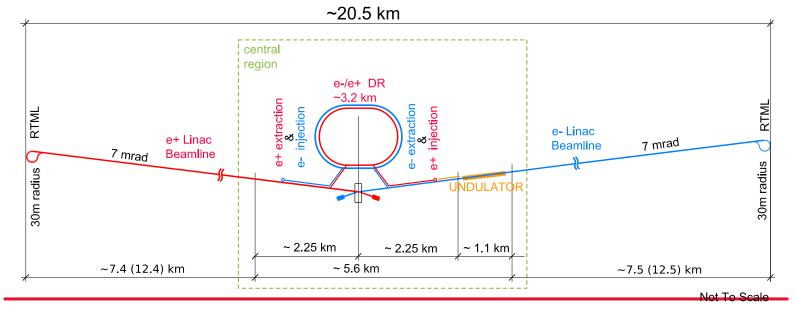
- Tunnel/cavern/shaft dimensions & type
- · component types and numbers
- Production of components
- Impact Assessment:
 -> ARUP

LCA Framework according to ISO 10040 Public Domain, https://commons.wikimedia.org/w/index.php?curid=40862556

4/9/2024

ILC Overall Structure (towards a PBS)

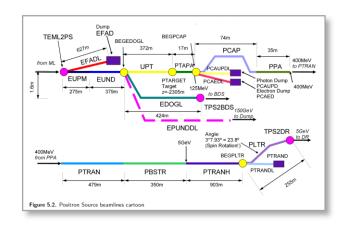
- Accelerator Areas:
 - ES: Electron Source
 - PS: Positron Source
 - DR: Damping Rings
 - RTML (Ring to Main Linac, i.e. transport line)
 incl. Bunch Compressors
 - ML: Main Linac
 - BDS: Beam Delivery System, incl. Dumps
 - In TDR, costs and rollups were done in a matrix approach, with all technical systems for each accelerator area
 - For TDR, no formal PBS was established
 - Obvious approach:
 - 1st level accelerator area
 - 2nd level technical system


- Technical Systems:
 - Civil Engineering
 - Civil Construction ("concrete2)
 - Technical infrastructure water, power, HVAC
 - SCRF Cavities & Cryomodules (1.3GHz)
 - HLRF (High-Level RF: Klystrons, modulators...)
 - Other RF Systems (DR 650MHz system)
 - Cryogenics
 - Magnets and (magnet) Power Supplies (includes magnet stands / girders)
 - Vacuum
 - Instrumentation
 - Dumps & Collimators
 - "Area specific" (e.g. positron source target)
 - Controls & Computing
 - Installation

Accelerator Areas

- ES: Electron Source
- PS: Positron Source
- DR: Damping Rings
- RTML (Ring to Main Linac, i.e. transport line) incl. Bunch Compressors
- ML: Main Linac
- BDS: Beam Delivery System, incl. Dumps

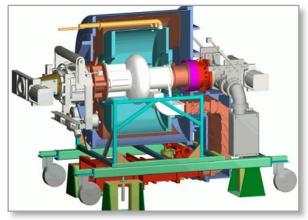



Sources (Electron & Positron)

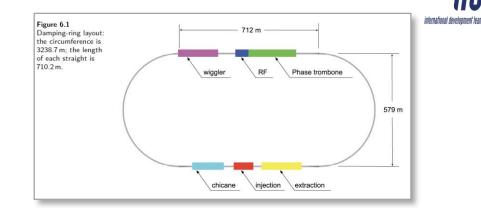
- Electron Source:
 - ~ 300m of beamline
 - Laser & target
 - 76MeV pre-accelerator
 - 5 GeV booster (superconducting linac)
 -> ~identical to 5GeV section of ML
 - Injection line into DR
 - -> vacuum tube and magnets

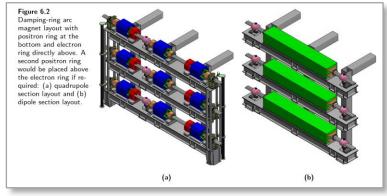
ILC TDR, Vol III.2

- Positron source
 - In electron main beamline:
 - 1150 m of beamline (vacuum, magnets), incl.
 - 230m of superconducting undulators
 - Photon beampipe
 - Positron source proper
 - Target station
 - 400MeV preaccelerators
 - 5 GeV booster
 - Injection line into DR -> vac & magnets



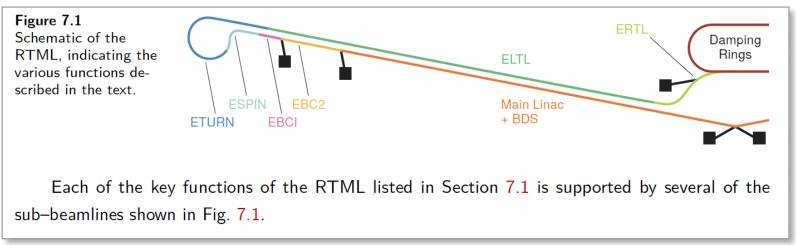
international de




Damping Rings

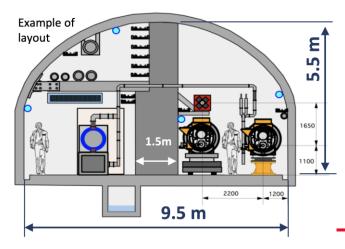
- Two accelerators (electron, positron) in one tunnel, 3.2km circumference (3rd ring is upgrade)
 - Magnets, mounted on girders
 - Vacuum System
 - RF system: 650MHz superconducting Rf system, 2-3.8MW power to beam
 - Area specific: Superconducting wigglers

https://www.researchgate.net/publication/230794961_Science_Requir ements_and_Conceptual_Design_for_a_Polarized_Medium_EnergyE lectron-lon Collider at Jefferson Lab


4/9/2024

RTML: Long Transfer Line, Turn Around, Bunch Compressors

- 2 (e-, e+) long transfer lines from DR to start of Main Linac; include turn around loop and bunch compressors
 - LTL (long transfer line): 2x10km beamline: vacuum system, magnets
 - Turn around: vacuum, magnets
 - Bunch compressors: long wiggler (magnet) sections, plus SC accelerators, same cryomodules as in Main linac
 - -> vacuum, magnets
 - 51 cryo modules (same as ML)

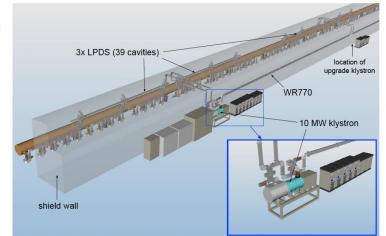


Main Linac

• 2 x 5km long linacs

- Cryomodules
- Cryogenics: ~6 cryo plants (commercial, ~19kW eq at 4.5K, 2K op, temp)
- HLRF: ~250 10MW pulsed klystrons, with modulators and wave guide distribution
- Instrumentation: BPMs within cryomodules, plus electronics
- Magnets: SC magnet package in CM, plus power supplies

Tunnel of European XFEL at DESY with Cryomodules Blue klystrons below



Main Linac Components

- Per "RF Unit":
 - 1 klystron
 - 1 modulator
 - Waveguide system
 - -> supplies 4.5 cryo modules, i.e. unit of 9 cryomodules (1 short string) has 2 RF units

Figure 3.42 The DKS arrangement

in the main-linac tunnel for the mountainous topography. One DKS unit (39 cavities) is shown.

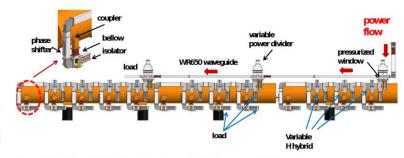
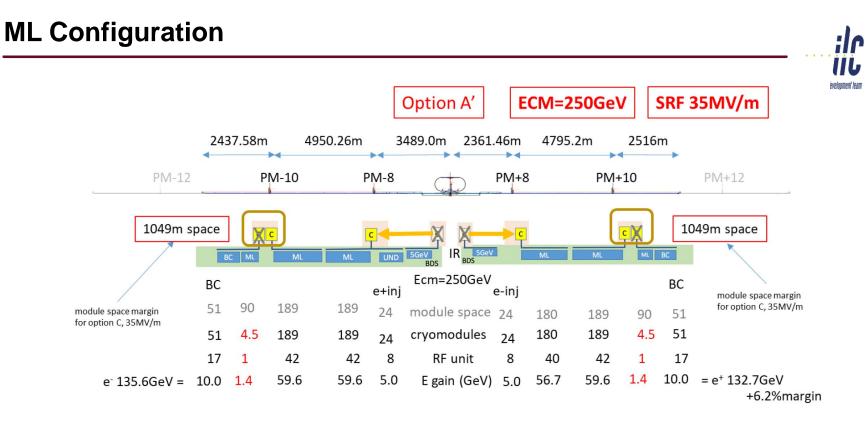


Figure 3.33. CAD model of a 13-cavity local power-distribution system (LPDS)

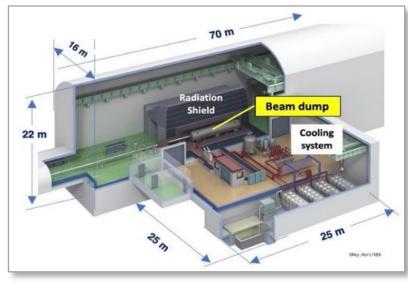
Figure 3.28. (a) DTI Marx modulator, (b) SLAC P1 Marx modulator and (c) SLAC P2 Marx.

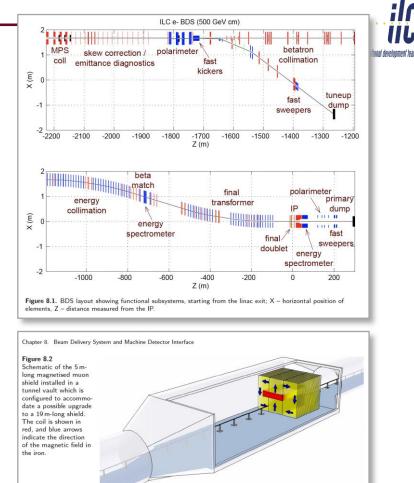

Figure 3.30 Thales TH1801 (left) and the horizontally mounted Toshiba E3736.

:lr iit

4/9/2024

Total tunnel length = 20549.5m (20.5km)


ILC Staging report, arXiv:1711.00568


Figure 3-7 Option A' configuration.

Beam Delivery System and Dumps

- 2 beamlines (e-, e+), ~2.5km long
- Magnets (large, because high energy)
- Vacuum system
- Beam dumps: 4 dumps overall, rating 17MW, water vessel, with radiation shielding and tritium treatment
- Muon deflectors: Large iron slabs

Detectors

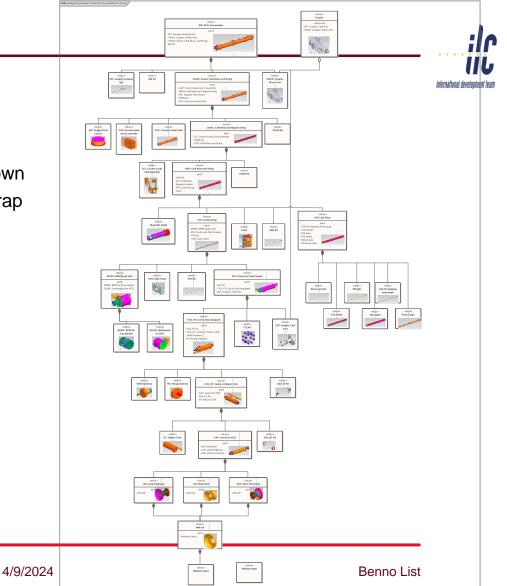
- Two concepts: ILD (International Large detector) and SiD (Silicon Detector)
- Biggest components of ILD:
 - Flux return yoke (iron) ~13499 tonnes of steel (ILD)
 - Calorimeters: ECAL: 109 tonnes steel
 - HCAL: 1154 tonnes tungsten(!)
 - Superconducting coil
- -> Detailed, up-to-date information available from detector collaborazions

ILD

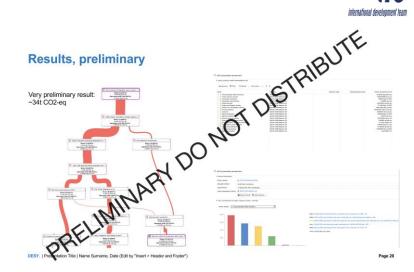
ILC: LCI Data for Cryomodules

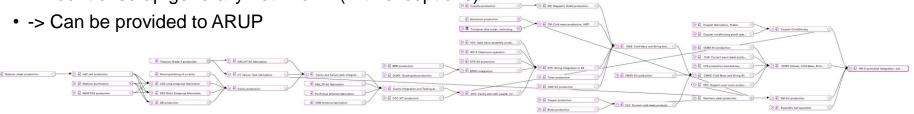
- ILC cryomodules are very similar to XFEL cryomodules
- Production of XFEL modules has been industrialized and is meticulously documented
- I prepared a detailed model of an XFEL cryomodule for a LCA
- Cryomodule: ~12.5 m long, mass 6.5ton

K. Jensch,


https://mks.desy.de/sites_desygroups/sites_extern/site_mks/content/e83094/e 127519/infoboxContent127521/2019_10_07_XFELmodules_ECD_Jensch_ger.pdf

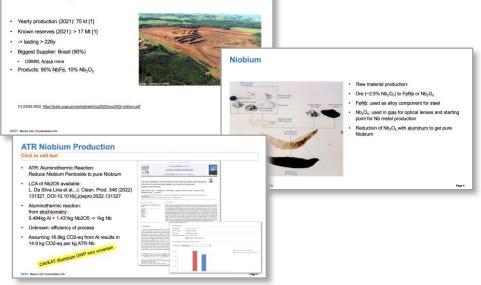
Cryomodule MBOM

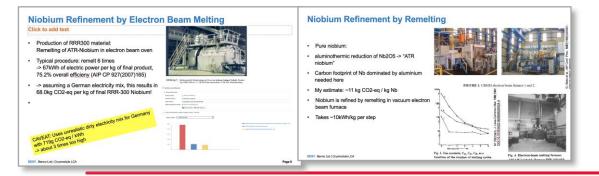

- Detailed MBOM, starting from Niobium sheet up to complete cryomodule
- Mass and material of components is known
- For some important steps, amount of scrap is known (production of half cells from sheets)

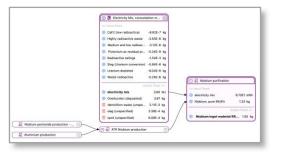


LCI Implementation of Cryomodule

- Manufacturing has been implemented in an OpenLCA model
- · LCI is expressed in terms of
 - Kg of high purity (RRR300) niobium also scrap
 - Kg of Nb45Ti55
 - Kg of titanium Grade 2
 - Kg of Cryophy (shielding metal, 60%Fe, 28%Mn, 10%Cr, 2%Ni)
 - Kg of stainless steel, brass, aluminium, high-purity (oxygen-free) copper
 - Km*t of transport (sea, road)
 - M2*day of cleanroom operation
 - Kg Usage of chemicals (phosphoric acid) not yet
 - Minutes of electron beam welding time not yet
- Amount of scrap generally not known (with exceptions)

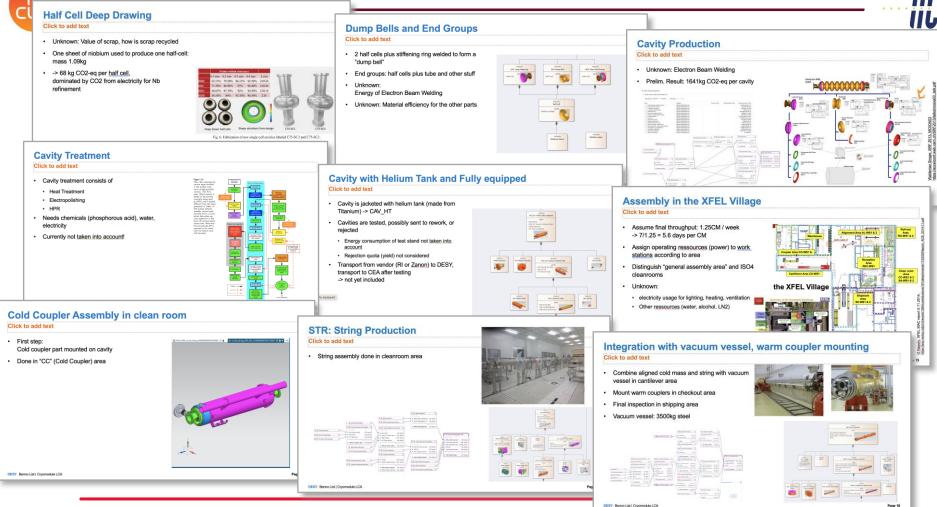

4/9/2024


Niobium Material

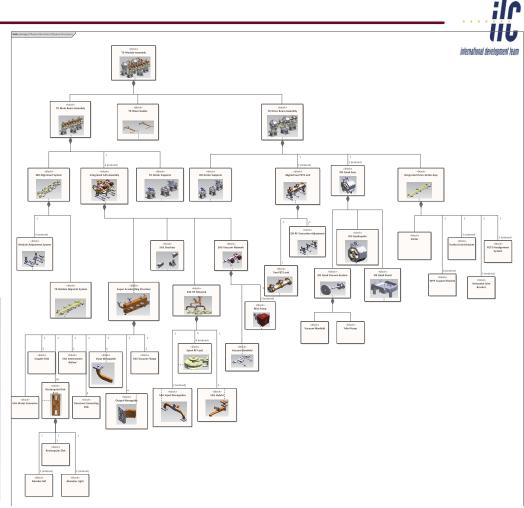


Niobium Mining

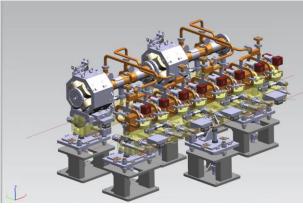
- Problem for this work: LCA data for some materials does not exist
 -> here: niobium
- No impact assessment data for high-purity ("RRR300") niobium available (?)
- Even for 99% pure niobium, data seems not exist? – could not check ecoinvent
- Research reveals good description of niobium processing
 - -> has been implemented in OpenLCA



Cryomodule Production Steps

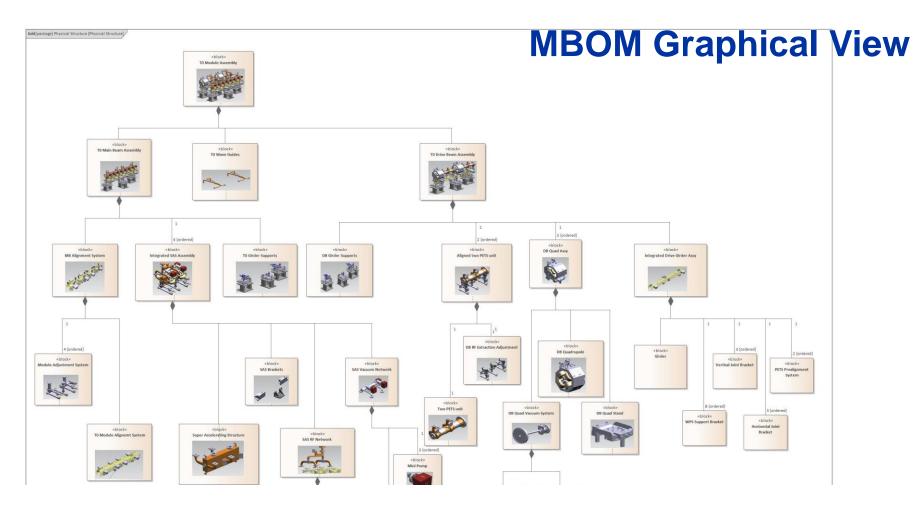


4/9/2024



CLIC: 2-Beam Module

- CLIC 2-beam module: The fundamental building block of the CLIC main linac
- Similar approach, based on existing CAD model



The T0 Module Data

1 2			0								
6 7 A	A B C D I	E F G	н	1	1	К	LI	N	0	P Q	
2	Con Then The Con Level 1 Level 2 Level 2 Level 1	el 3 Level 4 Level 5 Leve	6	v Number	PBS Code	PBS Text	▼ Quantity / /▼ Q / Tot	: 💌 Material	▼ Densit ▼	Mass 💌 Manufacturing	
4	TO Madula Assembly			674520727			1	1 Mixed		1710	_
5	T0 Module Assembly T0 Main Beam Assem	11.2		ST1528727 ST1550706	3.1.1.	Two-Beam Module Type 0 e+	1	1 Mixed		1710 950	
0	Integrated S/			311350706			4	4 Mixed		63	
8		er Accelerating Structure		ST1378439	3.1.1.1.1	Super-accelerating Structures	1	4 Mixed		47	
9	Sup	Rectangular Disk Assy		ST0790069	3.1.1.1.1.	Super-accelerating structures	56	224		0.7	
10		Rectangular Disk Assy	iek	ST0787907			1	224 Copper	8.85		
. 11		Absorber left	136	ST0798602			2	448 Silicon Carbide	3.21		
. 12		Absorber right		ST0798631			2	448 Silicon Carbide	3.21		
13		Coupler Disk		ST1378544			2	8 Copper	8.85		
14		Structure Connecting D	sk	222				0 Copper	8.85	1 Machined	
15		SAS Interconnect Bello	N	ST0347489			4	16 Stainless Steel	7.85	0.1 Fabricated	
16		Input Waveguide					2	8		0.5 Extruded	
17		Input Wavegu	ide Arm	ST1437145			1	8 Copper	8.85	Extruded	
18		Waveguide Fl	ange	ST0666851			1	8 Stainless Steel	7.85		
19		Output Waveguide					2	8		0.5	
• 20		Output Wave	guide Arm	ST1393409			1	8 Copper	8.85		
• 21		Waveguide Fl	ange	ST0666851			1	8 Stainless Steel	7.85		
22		SAS Vacuum Flange		ST0396788			8	32 Stainless Steel	7.85		
23		SAS Water Connector		ST1358471 + ST0295539			4	16 Stainless Steel	7.85	0.1	
				ST1556884 + ST1556973 +							
24	SAS	Bracket Set	6104	al daan ME		Appufactu	ring BOM)			9 Machined	
25		SAS Bracket 1		еі цеер імі		nanulaciu			.85		
26		SAS Bracket 2				e se tata se	1)		.85		
27		SAS Bracket 3	Based	d on CAD r	nodel (not identi	call		.85	3 Machined	
28	SAS	Vacuum Network								12	
29		Vacuum Manifold	_{fold} 114 lir	100						1.5 Fabricated	
• 30		Vacuum Mani	fold	163					.85	Fabricated	
31		Pumping port	lin altri d	المناطر بمعربهما	attes and		delle Anne	a second a la la la	.85	Fabricated	
32		Mini Pumps	-Inciud	ies muitibli	citv. ma	ass. matel	rial as far a	is avallable		2	
33	SAS	RF Network								1	
34		SAS Input Waveguides	linka	ne to overs		PRS whe	ere I could	identify it	05	1 Extruded	
35		SAS Input Wa							.85		

CERN

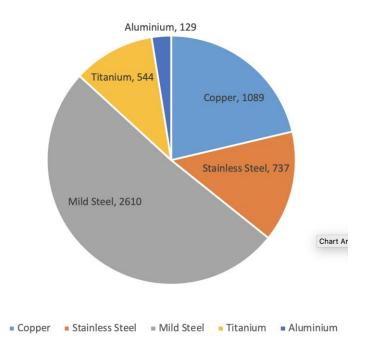
09.04.2024

Result for a T0 Module

			Stainless	Mild St	Titan A	Alum
	Sum	Copper S	Steel			
Main Beam Module & WG	906	155	114	583	45	9
T0 Drive Beam Assembly	871	159	22	686	0	5
Total mass (kg)	1777	314	135	1269	45	14
GWP/kg		2.5	3.7	1.7	8.1	8.2
Main Beam Module & WG: GWP (kg CO2-eq)	2237	388	421	991	363	74
T0 Drive Beam Assembly: GWP (kg CO2-eq)	1681	398	80	1167	0	37
Total GWP (kg CO2-eq	3918	786	501	2158	363	111
scarp mass estimate (kg)		242	128	532	45	5
scrap GWP (kg CO2-eq) (at 50%)	1191	303	236	452	181	18
total GWP with scrap (kg CO2-eq)	5109	1089	737	2610	544	129

Breakdown according to Material

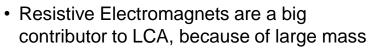
"Mild Steel": Mostly Support System


Conclusion here:

Supports have a large impact on CO2 just from the sheer mass -> a good place to start

For large scale production:

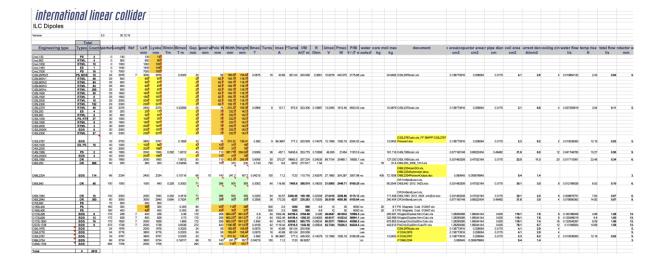
Cast iron may be interesting


- Reduced material carbon footprint
- Less scrap, less machining

Material (incl. Scrap) GWP [kg CO2-eq]

Magnets

- Many different types: dipoles, quadrupoles, sextupoles ...
- 2 Parts:
 - Yoke: Iron / magnetic steel, often made from stamped laminations
 - Coil: Copper conductor, extruded, insulation: epoxy resin
- Yoke and coil net weights are known
- Yoke gross weight can be estimated from overall cross section
- Coil:
 - extruded profile has probably little scrap
 - Insulation (potting) neglected so far
- Not to be forgotten: Stands! Here, data is often scarce...


Magnets in an accelerator

Magnet Catalogue: ILC

- List with magnet types, cross sections data, masses, number is available for ILC
- · Need some consolidation, but basically is ready to use

international dev

Magnet Catalogue: CLIC

- Magnet catalogue exists
- All types have preliminary designs, documented in a set of CLIC notes
- Summary table of types with properties exists as well

ndex	System	Туре	Magnet type	Generic type name	Shape family	Total	Total 380	Effective Length [m]	Aperture H/V [m]	Shape	Strength	unit	Range [%]	Rel. Field Accuracy	Higher harmonics [Tm]	Туре	PBS Items	Full Aperture	
	1 DB	MBTA	Dipole	D53L1470	D53	576		1.5	0.04/0.04	circular	1.6	т	10-100	1.00E-03	1.00E-04	MBTA	2.3.5.5, 2.3.6.5	53	3
	2 DB	CF_CR1	Combined Function				24	1											
	3 DB	CF_CR2	Combined Function				32	2											
	4 DB	CF_CR3	Combined Function				24	L .											
	5 DB	MBCOTA	Dipole CO	DC53L170	DC53	1872		0.2	0.04/0.04	circular	0.07	т	-1	1.00E-03	1.00E-03	MBCOTA	2.2.5.5, 2.3.6.5	53	3
	6 DB	QTA	Quadrupole	Q53L480	Q53	1872		0.5	0.04/0.04	circular	14	T/m	10-100	1.00E-03	1.00E-04	QTA	2.3.5.5, 2.3.6.5	53	3
	7 DB	SXTA	Sextupole	SX53L185	SX53	1152		0.2	0.04/0.04	circular	85	T/m2	10-100	1.00E-03	1.00E-03	SXTA	2.3.5.5, 2.3.6.5	53	3
	8 DB	MB1	Dipole	D93L1448	D93-1	184	342	1.5	0.08/0.08	circular	1.6	т	10-100	1.00E-03	1.00E-04	MB1	2.2.1.5, 2.2.6.5	93	3
	9 DB	MB2	Dipole	D93L648	D93-1	32	352	. 0.7	0.08/0.08	circular	1.6	т	10-100	1.00E-03	1.00E-04	MB2	2.2.1.5, 2.2.6.5	93	3
1	0 DB	MB3	Dipole	D93L150	D93-2	236	15	i 1	0.08/0.08	circular	0.26	т	10-100	1.00E-03	1.00E-04	MB3	2.3.2	93	3
1	1 DB	MBCO	Dipole CO	DC93L150	DC93	1061	1342	2 0.2	0.08/0.08	circular	0.07	т	-1	1.00E-03	1.00E-03	MBCO	2.2.1.5, 2.2.6.5, 2.3.2	93	3
1	2 DB	Q1	Quadrupole	Q93L460	Q93	1061	501	0.5	0.08/0.08	circular	14	T/m	10-100	1.00E-03	1.00E-04	Q1	2.2.1.5, 2.2.6.5, 2.3.2	93	3
1	3 DB	Q1++	Quadrupole				180)								Q1++			
1	4 DB	SX	Sextupole	SX93L170	SX93-1	416	202	2 0.2	0.08/0.08	circular	85	T/m2	10-100	1.00E-03	1.00E-03	SX	2.2.1.5, 2.2.6.5	93	3
1	5 DB	SX2	Sextupole	SX93L470	SX93-2	236	511	0.5	0.08/0.08	circular	360	T/m2	10-100	1.00E-03	1.00E-04	SX2	2.3.2	93	3
1	6 DB	SX2++	Sextupole				11									SX2++			
1	7 DB	QLINAC	Quadrupole	Q100L210	Q100	1638	655	0.25	0.087/0.087	No data	17	T/m	No data	No data	No data	QLINAC		100	0
1	8 DB	QLINAC	Quadrupole				8	5								QLINAC			
1	.9 DB	MBCO2	Dipole CO	D213L881	DC213	880	223	1	0.2/0.2	circular	0.008	т	-1.00E+00	2.00E-03	2.80E-05	MBCO2	2.3.1, 2.3.4	213	3
2	0 DB	Q4	Quadrupole	Q213L905	Q213	880	223	1	0.2/0.2	circular	0.14	T/m	10/100	0.002	2.80E-05	Q4	2.3.1, 2.3.4	213	3
2	1	Data from ATS N	ote 2011-044 / CLIC-Note 8	73 / EDMS 1139561												Data from ATS	Note 2011-044 / CLIC-Note 873 / EDMS 1	139561	
2	2 MB-BT	D1	Dipole	D30L970	D30-1	6	6	5								D1	1.3.13	30	0
2	3 MB-BT	D2 Type 1	Dipole	D30L1470v1	D30-2	12	29									D2 Type 1	1.3.4, 1.3.5, 1.3.8, 1.3.9	30	0
2	4 MB-BT	D2 Type 2	Dipole	D30L1970	D30-2	666	659									D2 Type 2		30	0
2	5 MB-BT	D3	Dipole	D30L1470v2	D30-3	16	16	5								D3	1.3.1, 1.3.2, 1.3.10, 1.3.11	30	0
2	6 MB-BT	D4	Dipole	D30L1470v3	D30-4	8	8									D4	1.3.10, 1.3.11	30	
2	7 MB-BT	Q1	Quadrupole	Q30L290v1	Q30-1	268	292									Q1	1.3.4, 1.3.5, 1.3.8, 1.3.9	30	0
2	8 MB-BT	Q2	Quadrupole	Q30L290v2	Q30-2	223	144									Q2	1.3.4, 1.3.5, 1.3.8, 1.3.9	30	0
2	9 MB-BT	Q3 Type 3	Quadrupole	Q30L290v3	Q30-3	202	280)								Q3 Type 3	1.3.4, 1.3.5, 1.3.8-1.3.11, 1.3.13	30	0
3	0 MB-BT	Q3 Type 2	Quadrupole	Q30L190v1	Q30-3	75	34	l l								Q3 Type 2		30	0
3	1 MB-BT	Q3 Type 1	Quadrupole	Q30L140v1	Q30-3	316	89)								Q3 Type 1		30	0
3	2 MB-BT	Q4 Type 3	Quadrupole	Q30L190v2	Q30-4	230	354	L .								Q4 Type 3	1.3.1-1.3.5. 1.3.8-1.3.12	30	.0

Vacuum Parts (ILC)

- Some data on length of chambers, number of flanges etc is available
- Can be used to evaluate a rough number of material per average meter of beamline
- Do separately for DR, RTML and BDS (different requirements)

Damping Ring Vacuum C	hanibers
Chamber Name	Number Req (2 Rings)
Arc Cell Chambers	
3m Dipole Chamber	300
Quad Vacuum Chamber	300
Arc Drift Chamber	600
Wiggler Cell Vacuum Chambers	
Wiggler Chamber	60
Wiggler Quad Chamber	60
Wiggler Drift Chamber	60
Wiggler Photon Stop	60
Chicane Cell Vacuum Chambers	
Chicane Quad Chamber	32
Chicane Drift Chamber 1	16
Chicane Drift Chamber 2	16
Chicane Drift Chamber 3	16
Chicane Drift Chamber 4	16
Chicane Dipole Chamber 1	16
Chicane Dipole Chamber 2	16
RF Cell Vacuum Chambers	
RF Drift Chamber 1	24
RF Drift Chamber 2	12
RF Drift Chamber 3	24
Straight Cell Vacuum Chambers	
Straight Quad Chamber	262
Straight Drift Chamber	250
Non-Repeating Components	
2m Dipole Chamber	16
Wiggler Straight End Photon Stop	2
Circular - Antechamber Transition	8
Wiggler - Arc Transition	2
Other Components	
Ion Pump + Plenum	1250
Sliding Joint + BPM	962
Gate Valves	64
Specialty Gate Valve	32
RGAs	64
Turbo Cart	10
Solenoid Power Supplies	520

RTML		Jo
	ML transpo	
_		<u></u>
Transport li		
Chambers		qu
beam pipe	15000	
bellows		
crosses		
pumps		
controller		
controller		
Valves		
gate		
interlock		
right angle		
Stands		
Hardware		
gaging		
gaskets		
cable		
bolts		
racks		
pumpcart		
Total M&S		
EDI		
EDI hours		
Contingenc	У	
	lau latiana	
Vacuum ca		
length	unit length	ur
15000	2	
pipe cost	passivate	fa
pipe cost 38	passivate 17	a
	17	
unit prices		
pipe unit co	st	
gasket		
pump cost		
controller		
iso valves		
vlv intlk		

2(

Item

Chambers, 2m long, with flanges

Gaskets, 5 per chamber Bolts, 6 per chamber

Stands, 1/2 per chamber Pumps, every 19m Pump Cross

Controller (1/2 per pump)

Chambers, 2m long

Right angle Bellows (2 per pump)

Bolts (9 per pump)

Racks (1 per 6 pumps) Valves, every 100m

Cable

Stands

Gate Interlock Gaging Pumpcarts Total (per meter)

	_	
Benno	List	

- Treatment / Estimation of gross raw material amount / scrap:
 - For milled and turned parts, net weight of final product is a bad estimator for total material
 - Detailed evaluation of raw material size typically hard to impossible
 - Designs from tubes, sheet metal, extruded material much more efficient
 - -> does it make sense to introduce "pseudomaterials" such as "milled/turned steel" (not "mild") and assume e.g. 1kg of milled steel uses 1.5kg steel and produces .5kg scrap?

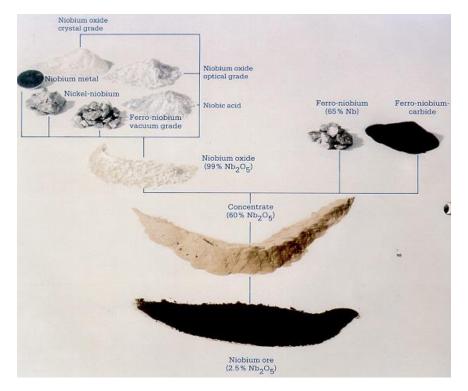
- Impact assessment of special materials encountered in accelerator component fabrication:
 - High-purity (RRR300) niobium
 - Ni45Ti55, Ti grade 2
 - Oxygen-free copper
 - Cryophy (shielding metal)
 - Magnetic steel (various qualities), with Co
 - -> hopefully, ecoinvent to the rescue
- Treatment of operation of production facilities: example XFEL village, with clean rooms
 - -> assume some overall power consumption (lighting, heating, ventilation), calculate rate for area*time?
- Special production methods
 - Electro polishing
 - Electron beam welding

End of Life - Disposal

- Inclusion of decommissioning & disposal of accelerator components and civil infrastructure in LCA up to now unsolved
- Missing quantitative data
 - How much waste is produced
 - · Amount of scrap that can be sold for recycling
 - Amount of activated material, impact of its treatment / storage / disposal
- Not all projects end in dismantling: ILC or CLIC based higgs factory will probably evolve into higher energy facility

https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1854_web.pd IAEA, Decommissioning of particle accelerators,

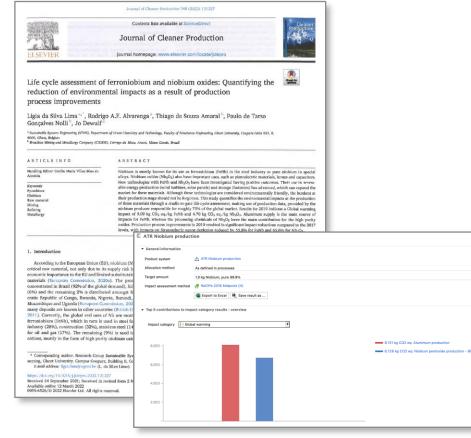
Thank You


Niobium Mining

- Yearly production (2021): 75 kt [1]
- Known reserves (2021): > 17 Mt [1]
- -> lasting > 226y
- Biggest Supplier: Brazil (90%)
 - CBMM, Araxá mine
- Products: 90% NbFe, 10% Nb₂O₅

[1] USGS 2022, https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-niobium.pdf

Niobium



- Raw material production:
- Ore (~2.5% Nb_2O_5) to FeNb or Nb_2O_5
- FeNb: used as alloy component for steel
- Nb₂O₅: used in glas for optical lenses and starting point for Nb metal production
- Reduction of Nb₂O₅ with aluminum to get pure Niobium

ATR Niobium Production

- ATR: Aluminothermic Reaction: Reduce Niobium Pentoxide to pure Niobium
- LCA of Nb2O5 available:
 L. Da Silva Lina et al., J. Clean. Prod. 348 (2022) 131327, DOI:10.1016/j.jclepro.2022.131327
- Aluminothermic reaction: from stochiometry: 0.484kg Al + 1.431kg Nb2O5 -> 1kg Nb
- Unknown: efficiency of process
- Assuming 16.8kg CO2-eq from AI results in 14.9 kg CO2-eq per kg ATR-Nb

Niobium Refinement by Electron Beam Melting

- Production of RRR300 material: Remelting of ATR-Niobium in electron beam oven
- Typical procedure: remelt 6 times
 -> 67kWh of electric power per kg of final product, 75.2% overall efficieny (AIP CP 927(2007)165)
- -> assuming a German electricity mix, this results in 68.0kg CO2-eq per kg of final RRR-300 Niobium!

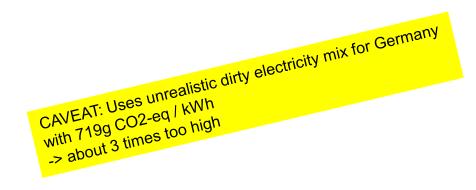
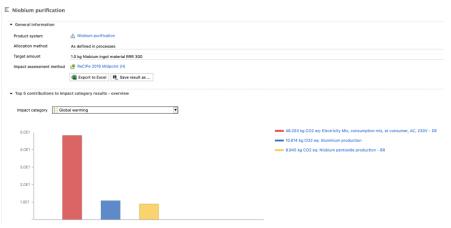



Abbildung 3: Elektronenstrahl Schmelzanlage der Firma von Ardenne Anlagen Technik. Dresden Typ: EMO 1500 mit 2 * 750 kW Elektronenstrahlen = 1500 kW Schmelzleistung.

Niobium Refinement by Remelting

- Pure niobium:
- aluminothermic reduction of Nb2O5 -> "ATR niobium"
- Carbon footprint of Nb dominated by aluminium needed here
- My estimate: ~11 kg CO2-eq / kg Nb
- Niobium is refined by remelting in vacuum electron beam furnace
- Takes ~10kWh/kg per step

Abdo et al., AIP Conf. Proc. 1687(1985)020001 1-10 105311 4035315

FIGURE 1. CBMM electron beam furnace 1 and 2.

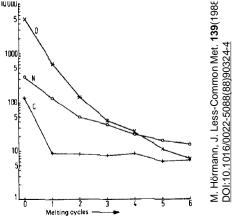


Fig. 5. Gas contents, C_0 , C_N , C_H , as a function of the number of melting cycles.

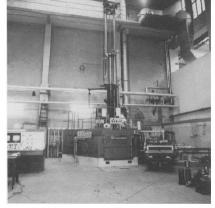
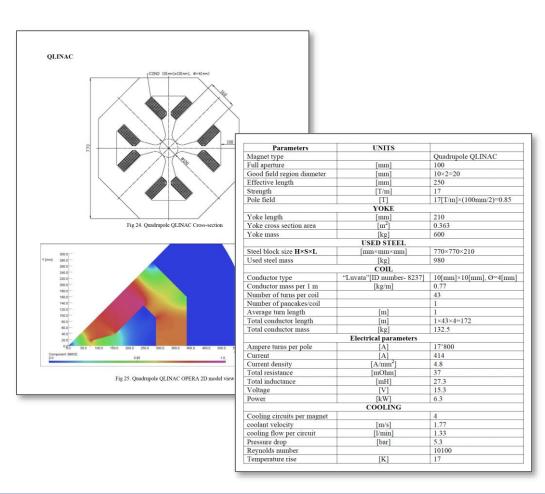
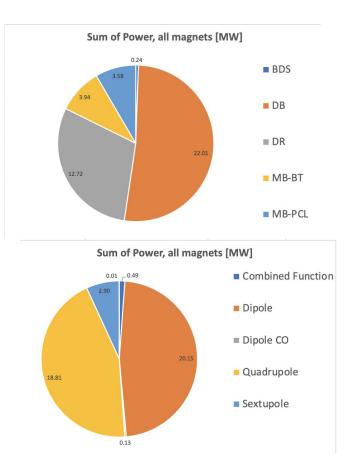



Fig. 4. Electron-beam melting furnace: 450 kW Leybold-Heraeus ESP 100/450. Page 34

The Magnet Catalogue

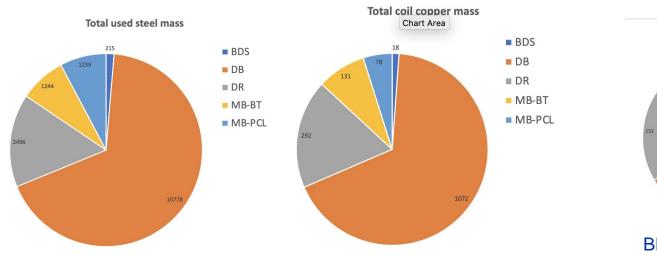
Comprehensive data sheets for many magnet types

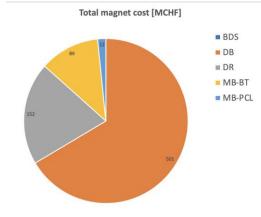
- CN 863 (MB PCL): 5 Types
- CN 864 (DB): 14 Types
- CN 865 (MB DR): 11 Types
- CN 873 (MB BT): 17 Types
- CN 984 (MB BDS): 55 Data sets;
 - 45 distinct types
 - could be further consolidated
 - · Not included in cost estimate document



Some plots from the magnet catalogue

Power of all magnets


Some assumptions here:


- For dipole correctors, assume 5% of nominal power
- For DB magnets, assume 50% of nominal power -> needs to be consolidated!
- This is NOT a reasonable estimate of magnet power per subsystem, important magnets missing (Main Beam!), settings not consolidated

Material Budgets and Cost

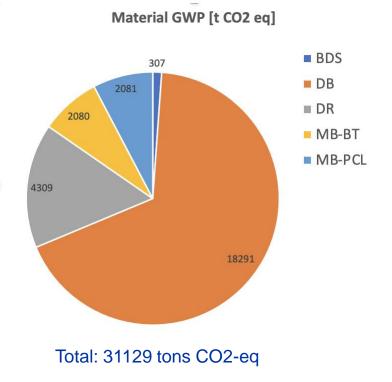
BDS magnets not costed

Used steel: estimate of steel mass before stamping Total amount: 15971 t At 2 CHF / kg: 32 MCHF (only material!!!) At 1.7 kg CO2-eq / kg: 27000 t CO2-eq

Total coil copper mass: 1591 t At 20 CHF/kg: 32 MCHF material cost At 2.5 kg CO2-eq/kg: 4000 t CO2-eq

Global Warming Potential GWP from Raw Material

GWP from steel and copper alone: 31000 tonnes CO2


How much is that?

arXiv:2203.12389 quotes 5000-10000 tons per km of tunnel

-> this corresponds to 3-6 km of tunnel (a very very rough estimate)

Missing here: CO2 impact of fabrication, cables, power supplies; material CO2 may be higher for special (pure) copper, cobalt steel etc

But most important: GWP from el. Power!

