

Linear Colliders | CLIC & ILC LCA Machine Componentry LCA Workshop with CERN and KEK

Yung LooHeleni PantelidouSuzanne EvansClaudia Di NoiCelia PuertasJin Sasaki9th April 2024

Workshop objectives

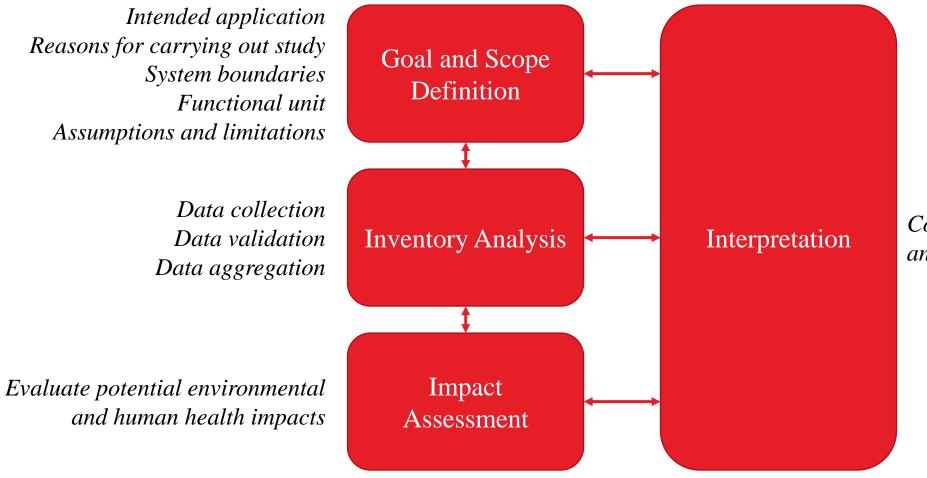
By the end of the session, we want to:

- Identify machine componentry and granularity to be included in LCA
- Establish approach for data collection and inventory analysis
- Agree system boundaries and functional unit for assessment
- Agree LCIA methodology and tooling
- Establish outputs required

Workshop agenda

Sec	etion	Length	Time	Format
1.	Introductions	10	14:00 - 14:10	
2.	Machine componentry overview	30	14:10 - 14:40	CERN presentation
3.	Presentation from Benno List on LCA work	10	14:40 - 14:50	CERN presentation
4.	Phase 2 scope of work	10	14:50 - 15:00	Arup presentation
5.	Summary of Phase 1 LCA and lessons learnt	15	15:00 - 15:15	Arup presentation
6.	Approach for inventory analysis	15	15:15 - 15:30	Arup presentation
BR	EAK	15	15:30 - 15:45	
7.	Data collection key questions	50	15:45 - 16:35	Discussion and activity
8.	Impact assessment and results analysis	15	16:35 – 16:50	Arup presentation and discussion
9.	Wrap-up and next steps	10	16:50 - 17:00	

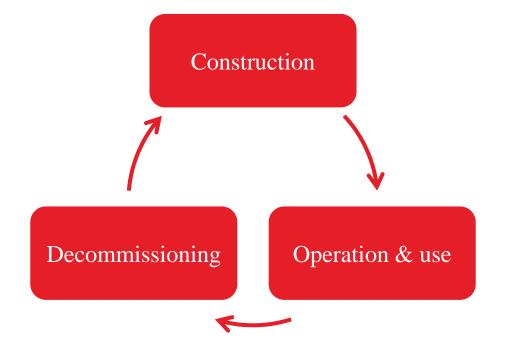
Introductions

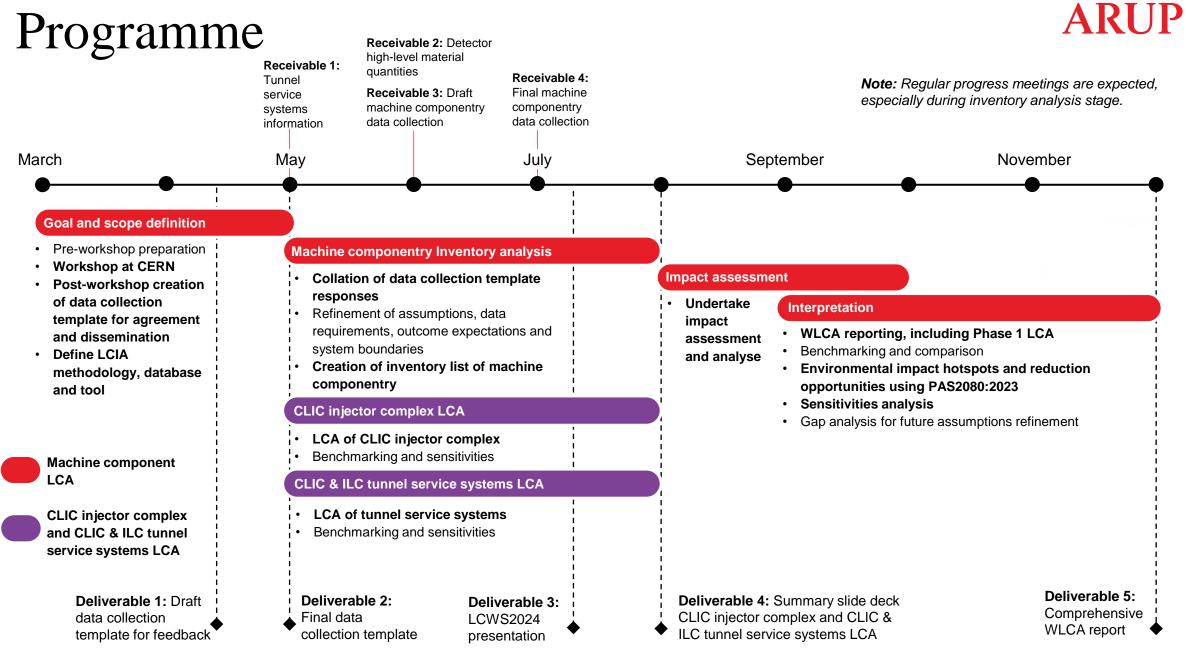

4

Phase 2 scope of work

5

Life Cycle Assessment Framework


Conclusions, limitations and recommendations


ISO 14040:2006

LCA Scope

Phase 2

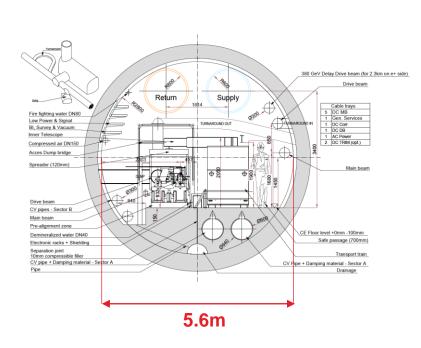
- Whole life cycle assessment of the machine componentry for CLIC & ILC (Construction, operation & use, decommissioning)
- Embodied life cycle assessment of CLIC injector complex and CLIC & ILC tunnel services systems (Construction)

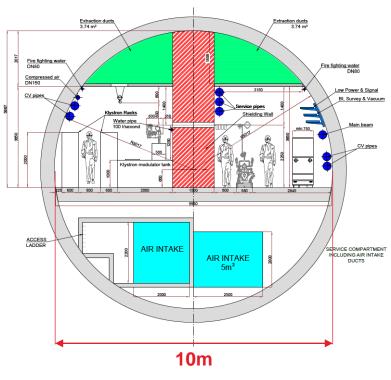
CLIC & ILC Machine Components LCA Workshop | 09/04/2024

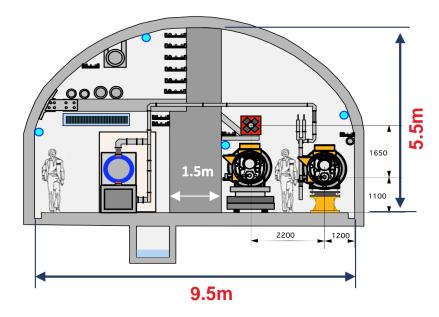
Phase 1 summary and lessons learnt

9

Linear collider options


CLIC Drive Beam

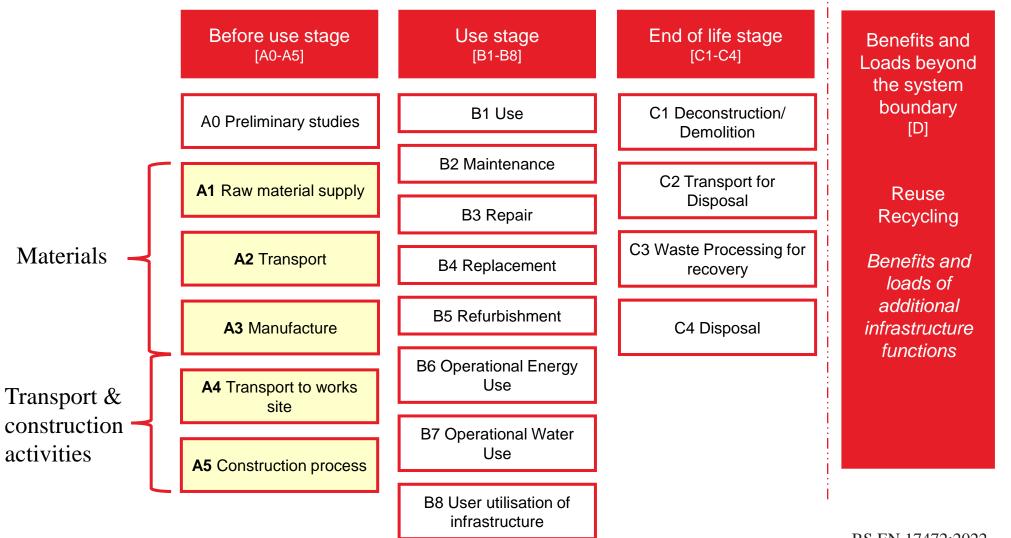

5.6m internal dia. Geneva. (380GeV, 1.5TeV, 3TeV)


CLIC Klystron

10m internal dia. Geneva. (380GeV)

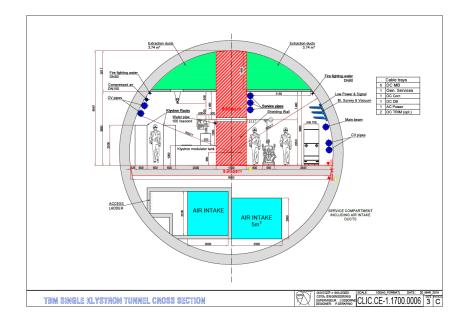
ILC Arched 9.5m span. Tohoku region, Japan. (250GeV)

Reference: CLIC Drive Beam tunnel cross section, 2018


Reference: CLIC Klystron tunnel cross section, 2018

Reference: Tohoku ILC Civil Engineering Plan, 2020

Goal and Scope


- **Goal:** Evaluate the material and construction environmental impacts of the CLIC Drive Beam, CLIC Klystron and ILC, identifying hotspots and potential reduction opportunities.
- Scope: CLIC & ILC options (tunnels, caverns & access shafts).
- Functional unit: per km length
- Methodology: ReCiPe 2016 Midpoint (H) Method. Evaluates 18 environmental impact categories, including Global Warming Potential (GWP), using LCA tool is Simapro with Ecoinvent database.

System boundaries

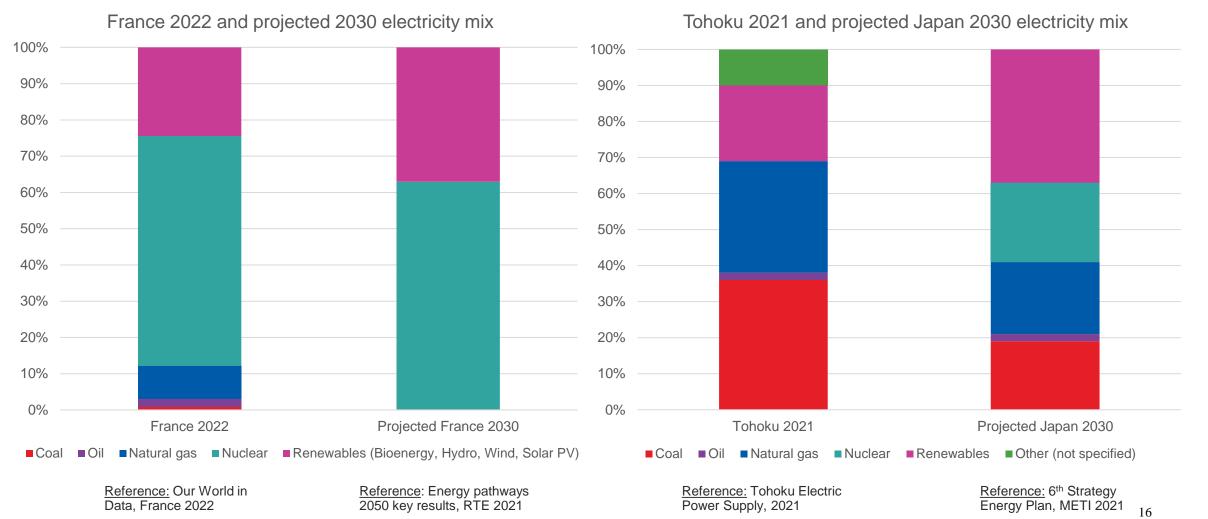
Inventory analysis

- Data collected through design reports and drawings
- Assumptions provided by CERN and KEK in absence of information

Specification	5.6m TBM	10m TBM	3m beam	Caverns	Drive beam	9m shafts	18 m shafts	12 m shafts
	tunnel	tunnel	turnaround		dump caverns			
Precast concrete thickness,	300	450	-	-	-	-	-	-
mm								
Precast concrete	50	50	-	-	-	-	-	-
compressive strength, MPa								
Grout lining thickness, mm	100	150						
Steel fibre density per vol.	35	35	-	-	-	-	-	-
concrete, kg/m³								
Rebar density, kg/m³	80	80	-	-	-	-	-	-
Shotcrete thickness, mm	-	-	200	400	200	300	500	400
Shotcrete compressive	-	-	30	30	30	30	30	30
strength, MPa								
Shotcrete rebar density per	-	-	60	55	55	20	50	50
vol. concrete, kg/m ³								
Rock bolting length (grid	-	-	2.5m (3 x 3	10m (3 x 3	10m (3 x 3 m)	7m (3 x 3	7m (3 x 3 m)	7m (3 x 3 m)
layout), m			m)	m)		m)		
In-situ concrete lining	-	-	200	110	45	300	600	500
thickness, mm								
In-situ compressive	-	-	40	40	40	40	40	40
strength, MPa								
In-situ rebar density per vol.	-	-	100	120	120	60	130	110
concrete, kg/m³			1					

Data Hierarchy

System	Sub-system	Components	Sub-components
CLIC Drive Beam 380	GeV		
	Tunnels		_
		Main accelerator tunnel	
			Primary Lining Permanent Lining Invert
		Turnarounds	
			Primary Lining Permanent Lining Invert
	Shafts		
		9-18m dia.	
			Primary Lining Permanent Lining
	Caverns		
		BDS, UTRC, UTRA, BC2, DBD, service cavern, IR cavern, detector and service hall	
			Primary Lining Permanent Lining



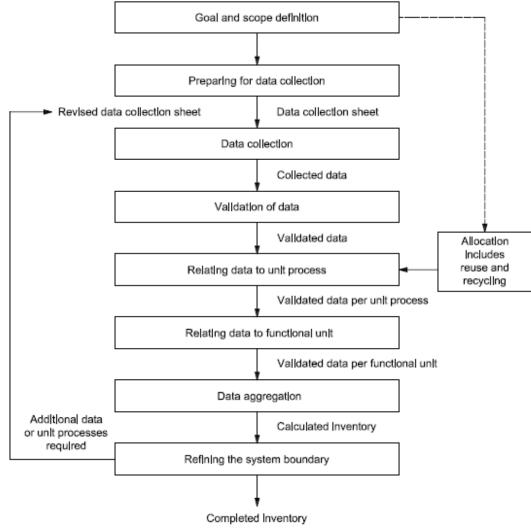
2030 Baseline assumptions

Construction LCA		CLIC Drive Beam	CLIC Klystron	I	LC		
Materials		Concrete (CEMI) & Steel (80% recycled)					
Transport of materials to site		Concrete: Local by road (50kr Steel: European by road (150	Concrete: Local by road (50km) Steel: National by road (300km)				
	Material wasted in construction	Concrete insitu: 5% Precast concrete: 1% Steel reinforcement: 5%					
Construction activities	Transport of disposal materials off site	Concrete and steel recycling: Concrete and steel landfill: 30 Spoil: 20km by road Assumed that 90% of EoL construct	•	sed and 10% is in land	fill.		
	Construction process	Tunnel Boring Machine (TBM)		Drill & Blast*	*Explosives excluded due to lack of data		
	Electricity mix 2021/2022	Fossil: 12% Non-fossil: 88%		Fossil: 71% Non-fossil: 29%			

Baseline and projected electricity mix

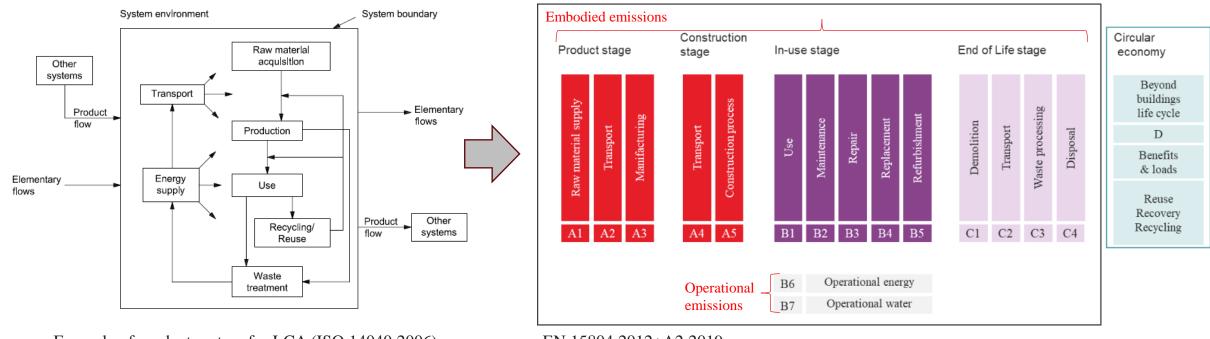
CLIC & ILC Machine Components LCA Workshop | 09/04/2024

Lessons learnt


- Determine key differences in material, transport and construction methodologies for CLIC & ILC supply chain and geographies
- Agree assumptions for both CLIC & ILC at the start so that immediate feedback can be given if there are discrepancies between them
- Use same LCIA methodology for CLIC & ILC options to enable fair comparison
- Evaluate results with a functional unit (for tunnels this is per km length)
- Granular hot spotting to identify carbon reduction opportunities
- Compare magnitude of results against other metrics (e.g. operational) CLIC & ILC Machine Components LCA Workshop | 09/04/2024

Approach for inventory analysis

18

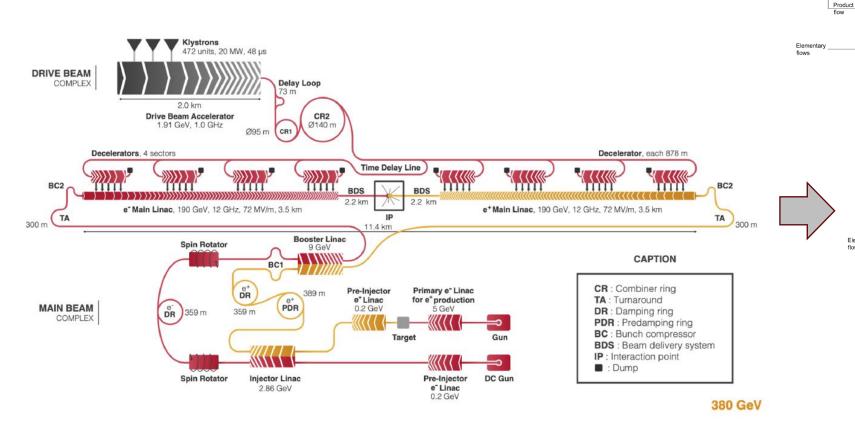

Inventory analysis approach

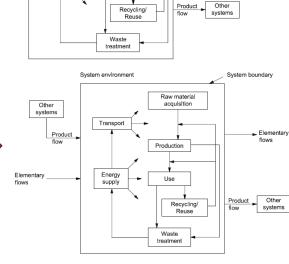
Procedure for inventory analysis (ISO 14044:2006)

Product LCA system

Example of product system for LCA (ISO 14040:2006)

EN 15804:2012+A2:2019


System boundary


Elementar

flows

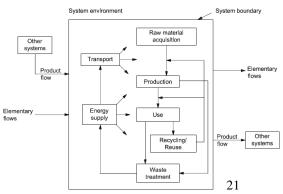
Inventory analysis

Identification of products (components)

Raw material acquisition

Production

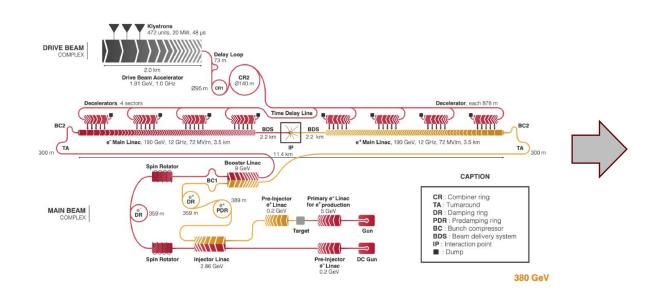
Use


System environment

Transport

Energy

supply


Other systems

Schematic layout of the CLIC complex at 380 GeV. The CLIC project. Brunner et al. 2022

Inventory analysis

Identification of products (components) – finding a suitable categorisation

D :		Cost [MCHF]	
Domain	Sub-Domain	Drive-beam	Klystron
	Injectors	175	175
Main-Beam Production	Damping Rings	309	309
	Beam Transport	409	409
	Injectors	584	
Drive-Beam Production	Frequency Multiplication	379	
	Beam Transport	76	
Main Linac Modules	Main Linac Modules	1329	895
Main Linac Modules	Post decelerators	37	
Main Linac RF	Main Linac Xband RF		2788
Beam Delivery and Post Collision Lines	Beam Delivery Systems	52	52
	Final focus, Exp. Area	22	22
Fost Comsion Lines	Post-collision lines/dumps	47	47
Civil Engineering	Civil Engineering	1300	1479
	Electrical distribution	243	243
Infrastructure and Services	Survey and Alignment	194	147
infrastructure and services	Cooling and ventilation	443	410
	Transport / installation	38	36
	Safety systems	72	114
Machine Control, Protection	Machine Control Infrastructure	146	131
and Safety systems	Machine Protection	14	8
	Access Safety & Control System	23	23
Total (rounded)		5890	7290

Schematic layout of the CLIC complex at 380 GeV. The CLIC project. Brunner et al. 2022

Data collection

Requirements

Where applicable (depending on life cycle stage and component):

- Energy inputs
- Raw material inputs and resources
- Products
- Waste
- Emissions to air and discharges to water and soil

Data collection inputs (ISO 14040:2006)

Data collection

Level of detail, inclusions/exclusions

Cut-off criteria can be defined based on:

- Mass
- Energy
- Environmental significance

Example from construction works/products (EN 15804+A2:2019): 1% cutoff criteria based on mass/energy per process or 5% per life cycle module

Data collection template

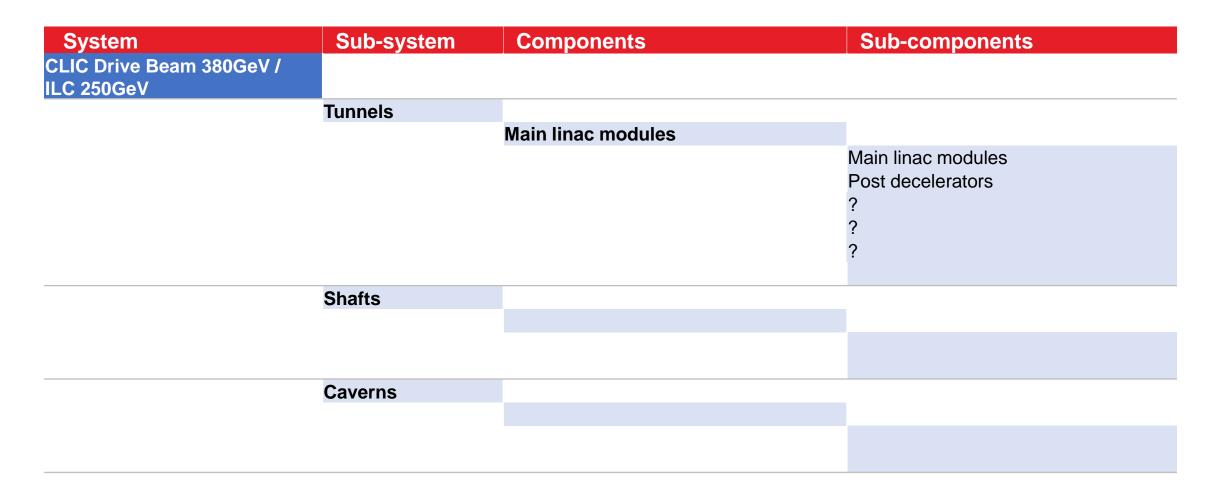
Format of data collection

Component /assembly name	Drive beam comple	EX							
Date of completion Contact person Glephone -Mall									
ontact person									
Mall									
Quantitative reference and unit	1 Item technical cl	1 Ben. Jechnical characteristics? Physical characteristics (weight)?							
adaminative reference and unit	Li nen' terrunyai manamananyai tullangan matagasianya (mallan)i.								
	0000000000								
Production stage DESCRIPTION: The drive beam complex includes lijectors add components for thequency multiplication									
nputs	Amount	Unit	Origin (Country)	Data source	Notes				
nergy									
Bectricity		1 kWh 1 MJ	Switzerland	Measurement	Electricity for production of component X				
Natural gas	j	1 MJ	Switzerland	Expert judgement	Total gas consumption for drive beam complex production				
Bectricity		1.kWh	Asia	Supplier	Electricity for production of component X				
Vlateriais									
Materiais Steel		1.149	rance	Expert judgement					
Copper		1; <i>kg</i>	France France	Measurement					
Aluminium		1 kg	China	Measurement					
Tin	5% overall weight	kg		Expert judgement					
lastics		1 kg	Europe	Measurement	<u></u>				
Resources Water									
water		197	Switzerland						
Packaging Plastics Wood pallets				·····					
HIASDC5									
wood panets									
Outputs	Amount	Unit	Source of emissions	Data source	Notes				
missions to air Carbon dioxide									
Carbon dioxide									
Emissions to water									
		·····							
Emissions to soil									
	·····								

- Data collection template structure to be agreed with CERN, e.g. one data sheet for each key component component
- Data for (sub-)components can be aggregated/disaggregated depending on data availability and desired analysis/visualisation of results

Break (15 mins)

26



Data collection key questions

27

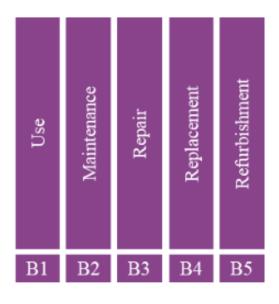
Data hierarchy – Machine componentry

Data collection

Production stage

- Where are the machine components manufactured?
- Are you able to identify the materials of the different components (by weight or % on total weight)?
- Will you be able to collect data on energy used and/or production steps to manufacture the components?
- Will you have any information on packaging and waste during manufacturing?

Data collection


Construction stage

TransportVConstruction process

- How are the machine components transported?
- Does installation of the components require energy or ancillary materials?

Data collection

Use and maintenance

- Are there any emissions occurring during the use of the machines (e.g. refrigerant leakage)?
- What are the main activities to maintain the machines? How often do they occur?
- What is the assumed service life of CLIC and ILC?
- What is the service life of the machine components? Are there parts replaced on a yearly basis?

Data collection

Operational energy and water

- B6 Operational energy
- B7 Operational water
- What are the sources of energy needed for the machines? What % is renewables?
 - What is the first year of operation and assumption for future energy mix?
 - What is the operational period per annum?
 - Is energy consumption available for the whole machine operation? Is it meaningful to split the energy consumption per component or operation phase?
 - Is any water input required for the functioning the machine?

Data collection

End of life

Demolition	Transport	Waste processing	Disposal	
C1	C2	C3	C4	

- Can the machine components be selectively dismantled?
- Disposal of hazardous or radioactive waste?
- Would you expect that machine components can be reused? If so, to what extent?
- Would you be able to make assumption on end of life pathways of machine components (incineration, recycling, landfilling)?
- Can we assume that the components will be disposed of/treated in Geneva/Northern Japan?

Data collection

Circular

economy

Beyond

buildings

life cycle

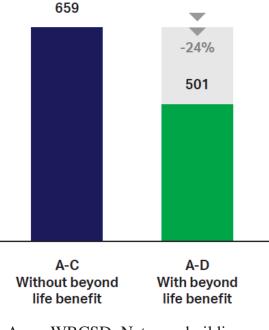
D

Benefits

& loads

Reuse

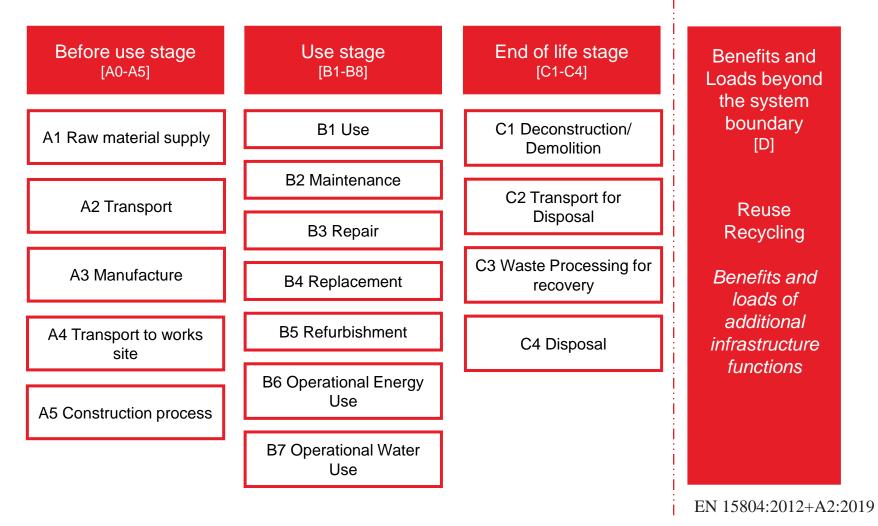
Recovery


Recycling

Benefits and loads beyond the system boundaries – Module D

Key aspects:

- Benefits for avoiding production of virgin raw materials/products thanks to reuse and recycling
- Benefits for avoiding production of energy (e.g. electricity, heat) thanks to thermal valorisation of waste (e.g. wood waste)


Whole life carbon example with and without module D [kg $CO2e/m^2$]

Arup, WBCSD. Net-zero buildings. Where do we stand? (2021)

Machine componentry system boundaries

Functional unit

- What functional unit is most useful for comparison between CLIC and ILC machine components? E.g.
 - CO_2e/m
 - CO₂e/year operation
- What is a suitable reference period for the calculation of impacts (linked to service life of machines)?

Wrap-up and next steps

37