A New Detector Concept for a 10 TeV Muon Collider

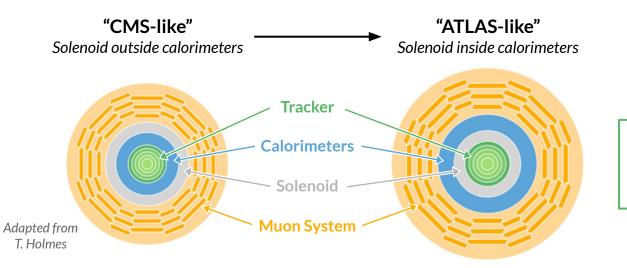
Quick Configuration Overview

Kiley Kennedy, Princeton University IMCC MDI Workshop, 26 June 2024

Overview

Title page: L. Lee, C. Bell 3D renderings with Unreal Engine

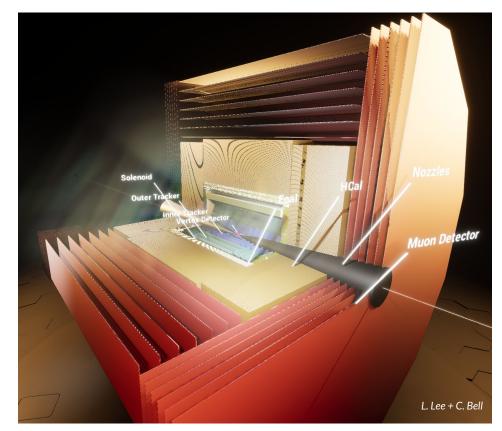
- → Introduction and motivation
- → Simulation of beam induced background (BIB)
- → Tracker: 10 TeV conceptual design and performance
- → Calorimeter: 10 TeV conceptual design and performance
- → Conclusions & Outlook


Results today include contributions from many, including:

F. Meloni, T. Madlener, P. Pani (DESY); D. Calzolari (CERN); K. DiPetrillo, B. Rosser, L. Rozanov, I. Hirsch, N. Virani (Chicago); T. Holmes, L. Lee, B. Johnson, M. Hillman, A. Vendrasco, A. Tuna (Tennessee); S. Jindariani, K. Pedro, (FNAL); R. Powers (Yale); S. P. Griso (LBNL); I. Ojalvo, K. Kennedy, J. Zhang, E. Sledge (Princeton).

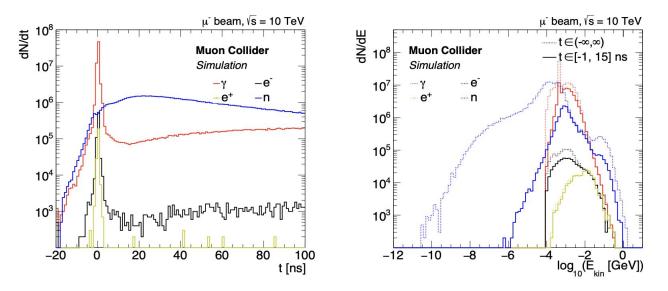
K. Kennedy

Introduction + Motivation

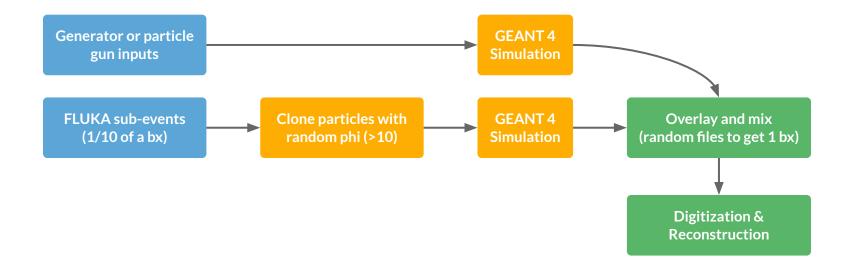

- → Extensive detector studies for 1.5 and 3 TeV muon colliders
 - Critical to determine if (and how) 10 TeV detector concepts can handle high BIB
- → BIB is the key challenge driving 10 TeV detector design
 - Similar nozzle strategy to as lower energy detector concepts
 - Some changes w.r.t. 3 TeV detector design, including *moving solenoid inside the calorimeters* (enabling higher B-field)

<u>Today</u>: update on progress towards a conceptual design for an "ATLAS-like" 10 TeV detector

Overview of 10 TeV Detector Concept


- → Nozzle Baseline: optimized design for 1.5 TeV
 - Tungsten + borated polyethylene
 - Major role in BIB mitigation
- → Tracker Vertex Detector, Inner + Outer Trackers
- → Solenoid 5 TeV, Aluminum
 - Higher B-field reduces tracker occupancy
 - Additional BIB shielding for calorimeters
- → Calorimetry High Granularity
 - ECAL Silicon-Tungsten
 - HCAL Iron-scintillator
- → Muon Spectrometer Simplified, Air + RPC
 - Not as impacted by BIB as other subsystems

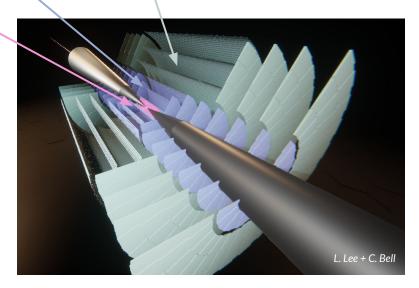
K. Kennedy


BIB Simulation | Assumptions

- → Assume dominant BIB from muon decays near the interaction region
 - Only consider muon decays in the final focusing region (otherwise deflected)
 - Ignore beam halo and incoherent pair-production for now
- → Particles simulated down to 100 keV kinetic energy; neutrons down to thermal

BIB Simulation | *Workflow*

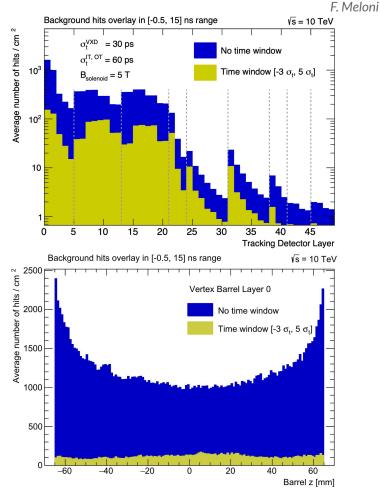
- → Using updated <u>FLUKA</u> 10 TeV BIB
 - Kinematics look very similar to 3 TeV; but MDI, nozzle optimization extremely important (<u>D. Calzolari</u>)
- → BIB simulation and overlay (<u>N. Bartosik</u>)
 - Simulating the BIB contributions in FLUKA is computationally expensive, so employ overlay strategy:



Tracker | *Conceptual Design*

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25 \mu \mathrm{m} imes 25 \mu \mathrm{m}$	50μ m $ imes$ 1mm	50μ m $ imes$ 10mm
Sensor Thickness	$50 \mu m$	100μ mm	100μ mm
Time Resolution	30ps	60ps	60ps
Spatial Resolution	$5\mu\mathrm{m} imes5\mu\mathrm{m}$	$7\mu m \times 90\mu m$	$7\mu m \times 90\mu m$

→ 3 TeV design: doublet layers in vertex det. to produce stubs


- → 10 TeV design: some doublet layers may not be needed
 - Removed all but one doublet layer in vertex detector
 - Tracking based on <u>ACTS</u> library led to significant improvements, found many doublet layers redundant
 - Additional considerations:
 - Higher B-field \rightarrow fewer avg. hits per BIB particle
 - Fewer layers: less material and power

K. Kennedy

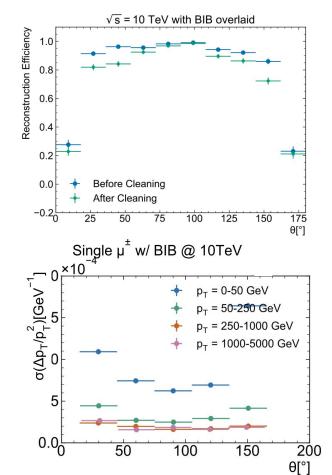
Tracker | *BIB Hit Densities*

- → Applying timing cuts significantly reduces BIB:
 - Broad time window \rightarrow [-0.5, 15] ns
 - Narrow time window \rightarrow [-3 σ_t , 5 σ_t]
 - With narrow time window, BIB hit densities ~flat in barrel
 - Sub-100 ps timing resolution critical to reduce hit occupancy in vertex layers
- → Hit density ~lower than at 1.5 TeV
- → Results here highly dependent on accelerator lattice and nozzle designs
- → Ongoing work: investigate effect of incoherent pairs, which likely leads to additional particle flux (see <u>F. Meloni's talk</u> today)

Tracker | *Reconstruction Performance*

Samples

- → Use single muon gun samples to assess tracking performance across a range of particle θ and p_{τ} O(GeV TeV)
- → Tight track cleaning selection: $p_T > 1 \text{ GeV}$, $|d_0| < 0.1 \text{ mm}$, $N_{hits} > 5$

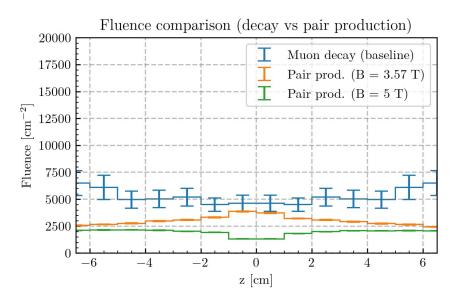

Reconstruction Efficiency

- → Approx. flat as a function of p_T
- → Lower efficiencies in more forward regions. With the addition of BIB:
 - Barrel minimal drop in reco efficiency (~3.5%)
 - Endcap moderate drop in reco efficiency (~20%) \rightarrow *future work to improve*

Track Parameter Resolutions

- → Track p_T resolution better at higher pT and centrally
- → Track d₀ resolution ~3-5 μ m with BIB, stable as a function of pT and θ

Tracking performance very good, especially in the barrel


K. Kennedy

Solenoid | *Conceptual Design and Impact on Fluence*

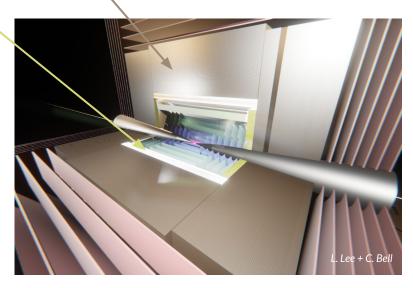
1.1

Subsystem	Region	R dimensions	$[\mathbf{cm}]$	$ \mathbf{Z} $ dimensions	$[\mathbf{cm}]$	Material
Solenoid	Barrel	150.0 - 185.7	7	230.7		Al

- → 3 TeV design: 3.57 T, outside calorimeters ("CMS-like")
- → 10 TeV design: 5 T, inside calorimeters ("ATLAS-like")
 - Higher solenoid B-field significantly reduces fluence (e+/e- results compared here)
 - BIB shielding for calorimeters
 - Adds ~265 mm of aluminum and thinner steel layers in barrel; additional steel layers in the endcap
 - Equivalent to ~4 X₀
 - <u>Caveat</u>: feasibility studies needed here!

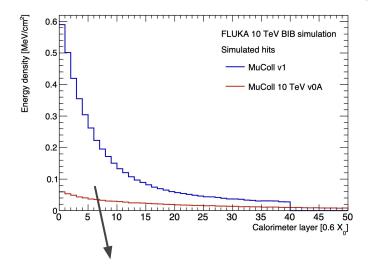
K. Kennedy

10 TeV Detector Concept | IMCC MDI Workshop, June 26, 2024

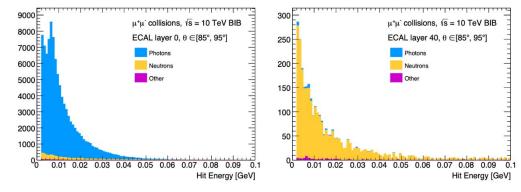

D. Calzolari

Calorimeters | Conceptual Design

ECAL HCAL Cell type Silicon - Tungsten Iron - Scintillator Cell Size 30.0mm \times 30.0mm 5.1 mm \times 5.1 mm Sensor Thickness 0.5mm 3.0mm Absorber Thickness 2.2mm 20.0mm Number of layers 50 100


→ **3 TeV design**: 40 layers (ECAL) and 60 layers (HCAL)

- → 10 TeV design: 50 layers (ECAL) and 75 layers (HCAL)
 - ECAL energy resolution target: $10\% / \sqrt{E}$
 - HCAL energy resolution target: $35\% / \sqrt{E}$


Calorimeters | *BIB Energy Densities*

Energy Density of BIB in ECAL: ~3-10x lower than 1.5 TeV due to solenoid shielding

BIB in the ECAL mostly due to photons and neutrons

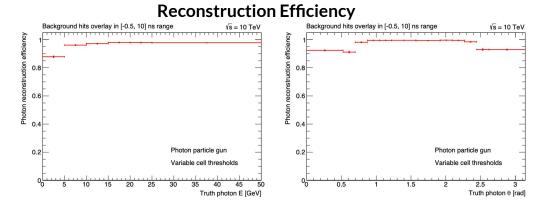
Most BIB so soft and diffuse that it is not possible to reconstruct Lower layers photon-dominated, deeper layers neutron-dominated

Further studies on impact of solenoid shielding needed, e.g.:

- → Charged objects with particle flow
- → Some clustering and track-cluster association issues in Pandora

Calorimeters | *Photon Reconstruction*

Samples


→ Single photon gun samples across a range of particle θ and $p_T O(1 - 100 \text{ GeV})$

Reconstruction Efficiency

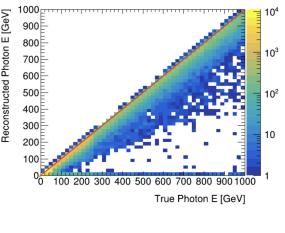
- Variable cell thresholds (in θ, depth) lead to
 ~100% efficiencies for photons in the barrel and with E > 15 GeV
- → Efficiency still good (~90%) in the endcaps and at lower energies

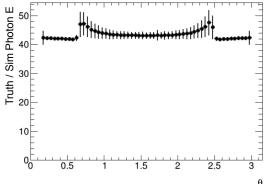
Energy Resolution – In Progress

→ ECAL calibration following recent geometry update in progress; expect photon energy resolutions of 10 TeV detector to be more comparable to those of 3 TeV

Energy Resolution No BIB, Barrel Region (1.01-r8-2 13rac √s=3 TeV - √s=3 TeV hoton =10 Te 10 Preliminary Preliminary Calibration in progress Calibration in progress 10-2 10 10² 10 10² True photon energy [GeV] True photon energy [GeV]

K. Kennedy


Calorimeters | ECAL Calibration


Summary of Issue:

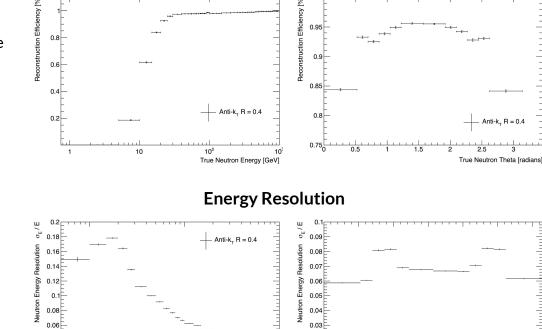
- → Updated detector geometry (more accurate) → increased material added to the ECAL barrel layers
- → Observe strong eta-dependence in ECAL energy response, with energies underestimated
- → Updated calibration needed

Calibration Studies:

- → Analytic correction (piecewise-function) as a function of theta:
 - Inclusive in energy does not significantly improve E resolution
 - Exclusive in energy poor fits for high energies (>450 GeV)
 - Studies ongoing

Calorimeters | Neutron Reconstruction

Samples


→ Single neutron gun samples across a range of particle θ and $p_T O(10 \text{ GeV} - \text{TeV})$

Reconstruction Efficiency

- → Plateaus close to 1 for E > 30 GeV
- → Better performance in the central (~95%) than forward region (~85%)

Energy Resolution

→ Best at high energies, worst in the transition region

0.02

0.01

0.5

Reconstruction Efficiency

K. Kennedy

10 TeV Detector Concept | IMCC MDI Workshop, June 26, 2024

10

10²

True Neutron Energy [GeV]

0.04

0.02

0

Anti-k_ R = 0.4

True Neutron Theta Iradians

1.5

E. Sledge

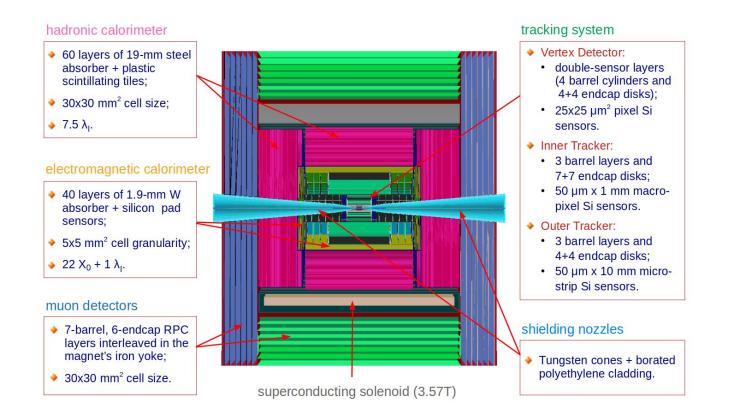
Conclusions + Outlook

Conclusions

- → Progress towards a detector concept for a 10 TeV muon collider
 - Started from a preliminary design concept a little over a year ago
- → Excellent tracking performance even with BIB
- → Calorimetry studies show promising results, but more work needed

Outlook

- → Ongoing and future studies include:
 - Detector-level: ECAL calibration, endcap & nozzle optimization
 - Calorimetry performance with BIB, impact of solenoid shielding
 - Physics studies: more complex objects, test benchmarks

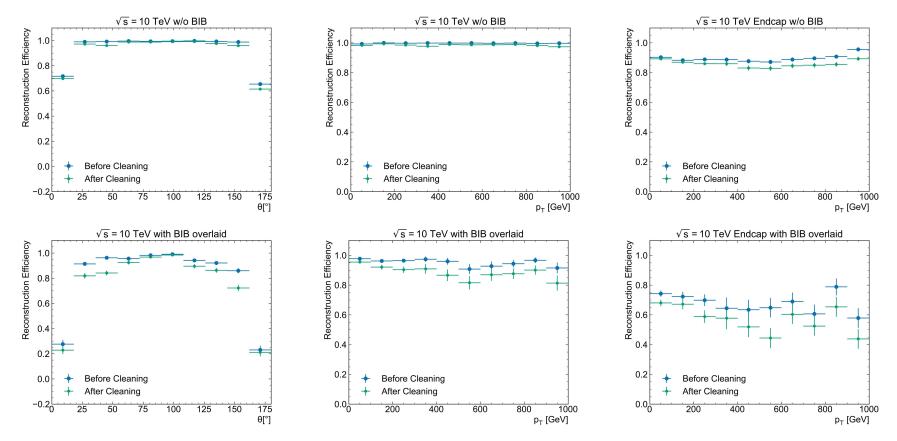


Thank You!

The Team:

F. Meloni, T. Madlener, P. Pani (DESY); D. Calzolari (CERN); K. DiPetrillo, B. Rosser, L. Rozanov, I. Hirsch, N. Virani (Chicago); T. Holmes, L. Lee, B. Johnson, M. Hillman, A. Vendrasco, A. Tuna(Tennessee); S. Jindariani, K. Pedro, (FNAL); R. Powers (Yale); S. P. Griso (LBNL); I. Ojalvo, K. Kennedy, J. Zhang, E. Sledge (Princeton).

Backup | Existing 3 TeV Detector Design

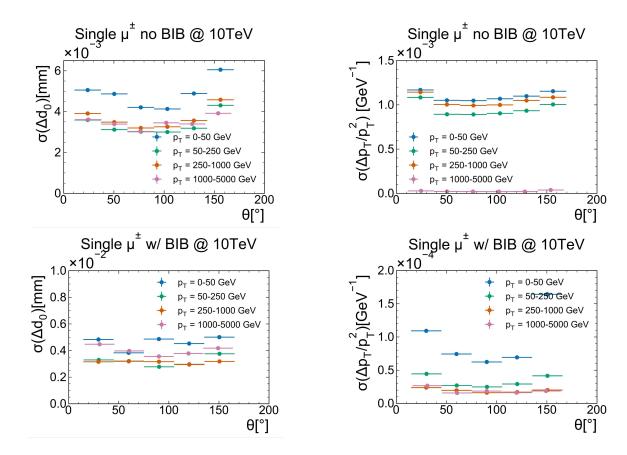


Backup | 10 TeV Layout Table

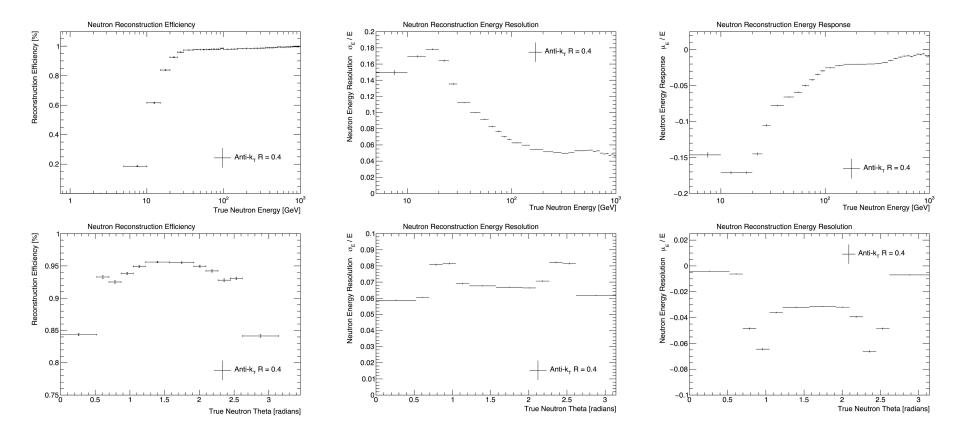
Subsystem	Region	R dimensions [cm]	$ \mathbf{Z} $ dimensions [cm]	Material
Vertex Detector	Barrel	3.0 - 10.4	65.0	Si
	Endcap	2.5 - 11.2	8.0 - 28.2	Si
Inner Tracker	Barrel	12.7 - 55.4	48.2 - 69.2	Si
	Endcap	40.5 - 55.5	52.4 - 219.0	Si
Outer Tracker	Barrel	81.9 - 148.6	124.9	Si
	Endcap	61.8 - 143.0	131.0 - 219.0	Si
Solenoid	Barrel	150.0 - 185.7	230.7	Al
ECAL	Barrel	185.7 - 212.5	230.7	W + Si
	Endcap	31.0 - 212.5	230.7 - 257.5	W + Si
HCAL	Barrel	212.5 - 411.3	257.5	Fe + PS
	Endcap	30.7 - 411.3	257.5 - 456.2	Fe + PS
Muon Detector	Barrel	415.0 - 715.0	456.5	Air + RPC
	Endcap	44.6 - 715.0	456.5 - 602.5	$\left \operatorname{Air} + \operatorname{RPC} \right $

K. Kennedy

Backup | *Track Reconstruction Efficiency*



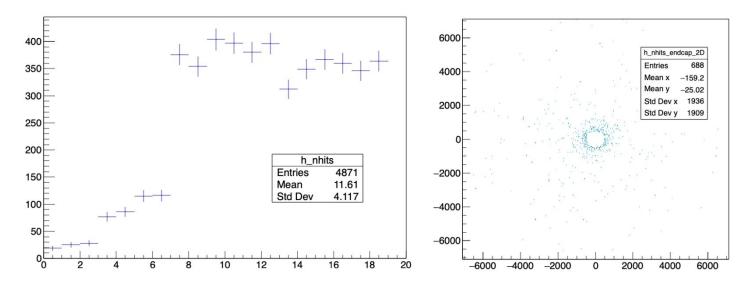
K. Kennedy


10 TeV Detector Concept | IMCC MDI Workshop, June 26, 2024

L. Rozanov

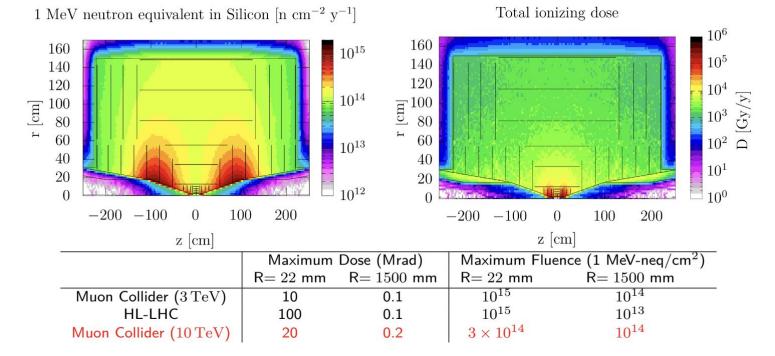
Backup | *Track Reconstruction Resolutions*

Backup | Neutron Reconstruction



10 TeV Detector Concept | IMCC MDI Workshop, June 26, 2024

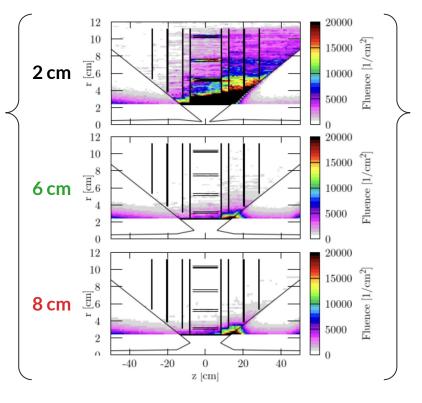
E. Sledge

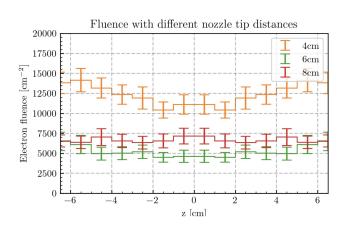

Backup | *Muon System Results*

- → Muon detector should be the least affected by beam induced background:
 - In general, BIB absorbed by solenoid and by calorimeters, so not a problem here.
 - Potentially some issues depending on nozzle geometry in far forward region.
- → Initial look at muon system occupancy: higher in endcap layers, but not an issue.

Backup | *Radiation Damage*

→ Radiation at 10 TeV comparable to HL-LHC and previous 3 TeV muon collider studies; much lower than FCC-hh (1018 1 MeV-neq/cm2) (2209.01318, 2105.09116)


K. Kennedy


10 TeV Detector Concept | IMCC MDI Workshop, June 26, 2024

B. Rosser

Backup | Nozzle Configuration Optimization Studies

Simulate BIB fluence with nozzle tip at different distances

- → Nozzle tip has a strong influence on the electron fluences
- → Require nozzle distance > 4 cm from origin to reduce EM showers
- → Studies ongoing!

10 TeV Detector Concept | IMCC MDI Workshop, June 26, 2024

D. Calzolari