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2
Tungsten

6 m

60 cm

𝟑 𝑻𝒆𝑽 MDI

▪ MAP design[1] with mixed function FF 

quadrupoles (Cyan)

IP

▪MAP nozzle design:

1) 10° closest to the IP

2) 5° starting from 𝑧 = 100 𝑐𝑚



BIB simulation with FLUKA

▪ Generated one beam of 𝜇+ decays within 𝟓𝟓𝒎 from the 

Interaction Point

▪ Energy threshold for particles production fixed at 

𝟏𝟎𝟎 𝒌𝒆𝑽

▪ Particles which arrives to the nozzles are scored

Pictures from D. Calzolari

▪ Propagation through the Nozzles

▪ Particles who exit the nozzle and enters the detector 

area are scored

▪ ~1.6% of one BIB event (i.e. bunch crossing) considering 

only 1 beam → 𝟒 𝒅𝒂𝒚𝒔 per simulation
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Forward Muons
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▪ Why are we interested in forward 

muons?

▪ Allows to distinguish process from Z/W 

boson fusion

▪ Allows precise measure of Higgs boson 

Width [2, 6]

▪ New physics might have forward muons 

in the final state [3]

𝑍 𝐵𝑜𝑠𝑜𝑛 fusion with forward muon production[3]



Detecting Forward Muons
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Scoring plane

▪ Two main candidates:

▪ Nozzle: Small detector, high 
dose for BIB

▪ Cavern: Large detector, clean 
environment 

▪ This presentation focuses on 
Nozzle detectors

▪ Three silicon layers put close to 
ring in FLUKA simulation as 
scoring planes

Cavern

Beam 
monitor?
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Simulated samples

▪ Forward muons from:
𝜇+𝜇− → 𝑍𝑍 + 𝝁+𝝁− → H + 𝝁+𝝁− → 𝑊+𝑊− + 𝝁+𝝁−

▪ 2 ∙ 6.15 ∙ 103 Montecarlo muons from WHIZARD 
output

▪ Beam Induced Background:

▪ 1.4 % of bunch crossing simulated (two step 
simulation)

▪ Particles crossing the silicon layers are scored

▪ Silicon layers do not reproduce a detector behavior
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Simulation Outputs

▪ Forward Muons:

▪ Fixed time of arrival in the layers

▪ Coming from IP

▪ High energy ⇒ 0.7, 1.4 𝑇𝑒𝑉

▪ Beam Induced Background:

▪ Most particles arrive earlier then 
bunch crossing

▪ Time cuts discard great majority of 
BIB
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Performance

▪ Total counts within ±100 𝑝𝑠

time window with respect to 

muons arrival time on layers:

Event Layer 1 Layer 2 Layer 3

𝐵𝐼𝐵∗ 2.5 ∙ 104 2.7 ∙ 104 3.0 ∙ 104

𝑍 𝑓𝑢𝑠𝑖𝑜𝑛∗∗ 3228/6150 3232/6150 3225/6150

▪ A rough tracking is performed 

to discard particles that are 

not coming from IP:

Event Global 
Efficiency [%]

Tracking 
Efficiency [%]

𝐵𝐼𝐵# < 0.28

𝑍 𝑓𝑢𝑠𝑖𝑜𝑛## 52.5 99.2

*Normalized to the bunch crossing
** 6150 events simulated

# 0 particles tracked, estimation on the total bunch crossing computed according to [1]
## Efficiency computed on the total muon generated, i.e. 6150, not on only the ones who pass 
through the nozzle and the layers

https://indico.cern.ch/event/66256/contributions/2071577/attachments/1017176/1447814/EfficiencyErrors.pdf
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Nozzle Design

▪ High statistics approach:

▪ 1.6 % of bunch crossing per simulation

▪ Focused on understand the relations between shape and BIB flux

▪ Goal is to improve the detector acceptance and keep the BIB manageable

▪ Machine Learning approach:

▪ Hundreds of low statistics simulation with several parameters considered

▪ Trained a XGBoost model to predict a configuration that minimize the flux

▪ Testing the configuration with the high statistics simulation

▪ Interacting with MODE collaboration
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High Statistics Approach 

▪ Lessons learned:

▪ The Beam Pipe cannot be touched, by 

increasing the minimum nozzle internal radius 

from 0.3 → 0.4 𝑐𝑚, BIB increase by a factor 2
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High Statistics Approach 

▪ Lessons learned:

▪ The Beam Pipe cannot be touched

▪ Is Boreth layer really effective?

▪ Tried to put the Boreth inside the nozzle

TIME WINDOW APPLIED

Tungsten block
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▪ Lessons learned:

▪ The Beam Pipe cannot be touched

▪ Is Boreth layer really effective?

▪ Nozzle tip is the critical part 𝑧 ∈ 0, 1 𝑚

High Statistics Approach 
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Machine Learning Approach 

▪ 1st ran → 5 parameters, 3125 

simulations

▪ 2nd ran →7 parameters, 2187 

simulations

𝑟𝑏𝑎𝑠𝑒
𝑟𝑠𝑡𝑒𝑝

𝑧𝑠𝑡𝑒𝑝

𝜃tip
𝑧𝑐ℎ𝑎𝑛𝑔𝑒

𝑧tip 𝑟tip
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XGBoost performance

∆=
𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒 − 𝐹𝑙𝑢𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒
∗ 100
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XGBoost performance
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Nozzle Design XVI

▪ Minimum flux  according to the last ML studies

▪ Shape very similar to the original, but the Nozzle tip is shifted: −6, 1 → −4, 1.4
▪ Less 𝛾 and 𝑒± but more neutron
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Incoherent Pair Production

▪ Produced the 𝑒± pairs with GUINEAPIG

▪ Products propagated in FLUKA as for two Step Simulation

▪ Done but not yet analyzed, occupancy in the detector 
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Conclusions

▪ Forward Muons:

▪ About of 50 % of forward muons can be detected

▪ Next step: measure muons momentum, study the dose on the possible detectors

▪ Nozzle design:

▪ Small changes in the geometry leads to significant variation in flux and occupancy

▪ Worth investigate more the impact of the tip on the BIB, not much can be done concerning the overall 

shape, nevertheless, I hope the collaboration with MODE will produce interesting results

▪ Incoherent pair production:

▪ The contribution to the overall BIB flux is two-to-three order of magnitude less then standard BIB

▪ Impact on detector must be checked



Thank you for the attention
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Muon decay position



BIB simulation with FLUKA
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Detector
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Forward Muon in Nozzle



BIB characteristics

27

▪ By requiring a window of ±100 𝑝𝑠 with respect to the expected time of arrival in the layers 

BIB reduced by 5 order of magnitudes



BIB characteristics
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▪ BIB particles passing through the layers within the time window (1.4% of b.c)



(a rough) Tracking 
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▪ Assuming that forward muons are 

produced at the IP, a straight line 

is the defined for each point in 

layer 1

▪ The line is propagated to layer 2

and 3. If at least 1 particle is 

present in the expected position 

± 1 𝑐𝑚, the particle is tagged as a 

forward muon

?

?
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High Statistics Approach 

▪ Lessons learned:

▪ The Beam Pipe cannot be touched

▪ Is Boreth layer really effective?

▪ Tried to put the Boreth inside the nozzle
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Low Statistic simulation

▪ Two step: 2% of one beam, one 

bunch crossing

▪ Pipeline: 0.025% of one beam, 

one bunch crossing

▪ Pipeline nozzles smaller than 

original (aperture = 20 cm)

▪ 𝜎 = #𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠



ML Studies
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▪ 2*1200 simulation performed with 

minimum beampipe radius 0.3 

(original) and 0.35 

▪ 3 geometrical parameters:

▪ 𝜃𝑡𝑖𝑝 ∈ 3.8; 10 ° → 10 values

▪ |𝑧𝑐ℎ𝑎𝑛𝑔𝑒| ∈ 50; 200 cm

→ 15 values

▪ 𝑟𝑏𝑎𝑠𝑒 ∈ 20; 60 cm → 8 values

▪ 0.02% of 1 bunch crossing simulated

▪ Due to input settings, the real nozzle 

aperture is →

𝑟𝑏𝑎𝑠𝑒

𝑧𝑐ℎ𝑎𝑛𝑔𝑒

▪ 𝜃𝑛𝑜𝑧𝑧𝑙𝑒 = 𝑡𝑎𝑛−1
(94∙tan 𝜃𝑡𝑖𝑝)∙𝑟𝑏𝑎𝑠𝑒/60

𝑧𝑐ℎ𝑎𝑛𝑔𝑒 −2
∈ 0.7; 18 °

𝜃𝑛𝑜𝑧𝑧𝑙𝑒
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Improving the ML

▪ Two new parameters:

▪ 𝑧𝑠𝑡𝑒𝑝 ∈ −450;−200 𝑐𝑚

▪ 𝑟𝑠𝑡𝑒𝑝 ∈ 0.75; 0.95 ∗ 𝑟𝑏𝑎𝑠𝑒

▪ 3125 samples (5 values 

per each parameter)
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Improving the ML - 2

▪ Two new parameters:

▪ 𝑧𝑡𝑖𝑝 ∈ −8;−4 𝑐𝑚

▪ 𝑟𝑡𝑖𝑝 ∈ 0.6; 1.4 𝑐𝑚

▪ 2187 samples (3 values 

per each parameter)
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Nozzle Design XVI
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