Tungsten Alloys

Andrea Bersani

Definition of Tungsten alloy

- → Source: ASTM specification B777-07
- \sim "Machinable, high-density tungsten base metal produced by consolidating metal powder mixtures, the composition of which is mainly tungsten"
- \sim "For purposes of this specification, non-magnetic material is defined as material having a maximum magnetic permeability of 1.05"
- \frown Classification in 4 classes
- \frown Class 4 is not available in non magnetic form

Class	Tungsten nominal weigth (%)	Density (g/cc)	Hardness (Rockwell
1	90	16.85-17.25	32
2	92.5	17.15-17.85	33
3	95	17.75-18.35	34
4	97	18.25-18.85	35

Mechanical properties

Class	Ultimate te	nsile strength	Yield strengtl	Yield strength at 0.2% offset			
	ksi	MPa	ksi	MPa	%		
1	110	758	75	517	5		
2	110	758	75	517	5		
3	105	724	75	517	3		
4	100	689	75	517	2		

- → Source: ASTM specification B777-07
- \sim For non-magnetic alloys, ultimate tensile strength is reduced to 94 ksi (648 MPa)
- \neg All data at room temperature
- → Machinability is strongly dependent on class
 - \neg number of hole a particular tool can drill is 8, 6, 4 and 2 for classes 1, 2, 3, 4 respectively

Commercially available example

	alloy™ des	SD170	SD175	SD180	SD185	Dens 21	Dens 23	Dens 25	Uniperm 170	Uniperm 175	Uniperm 180
Characteristics			Standard	d Grades				Non-Magn	etic Grades		
	MIL-T-21014D	Class 1	Class 2	Class 3	Class 4	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
Donoity	AMS-T-21014	Class 1	Class 2	Class 3	Class 4	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
Density Classification	AMS-7725E	Class 1 Type 2	Class 2 Type 2	Class 3 Type 2	Class 4 Type 2	Class 1 Type 1	Class 2 Type 1	Class 3 Type 1	Class 1 Type 1	Class 2 Type 1	Class 3 Type 1
	ASTM B777-15	Class 1	Class 2	Class 3	Class 4	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
Tensile	UTS (ksi)	125	125	125	130	110	110	110	110	110	105
Properties	0.2% OYS (ksi)	83	85	90	95	80	80	80	75	75	75
(typ.)	EL, min. (%)* @ 1"	5	5	3	2	2	2	1	2	2	1
Mag. Perm.	per ASTM A342	>1.05	>1.05	>1.05	>1.05	~1.01	~1.01	~1.01	~1.00	~1.00	~1.00
Donoity nom	(g/cc)	17.0	17.5	18.0	18.5	17.0	17.5	18.0	17.0	17.5	18.0
Density, nom.	(lb/in ³)	0.61	0.63	0.65	0.67	0.61	0.63	0.65	0.61	0.63	0.65
Hardness, typ.	(HRC)	28	28	29	30	28	28	29	28	28	29
W Content, nom.	(wt. %)	90	92.5	95	97	90	92.5	95	90	92.5	95
Modulus, nom.	(x 10 ⁶ psi)	50	52	54	56	50	52	54	50	52	54
Binder Elements		Ni + Fe	Ni + Cu	Ni + Cu	Ni + Cu						

→ From kennametal.com datasheet

Genova, Jun. 2024

Commercially available example

Grade	HA 190	HA 1925	HA 195	HE 390	HE 3925	HE 395	HE 397
Aerospace Industry Standa	rds						
ASTM B777-15	Non-magnetic Class 1	Non-magnetic Class 2	Non-magnetic Class 3	Magnetic Class 1	Magnetic Class 2	Magnetic Class 3	Magnetic Class 4
AMS 7725E	Type 1 Class 1	Type 1 Class 2	Type 1 Class 3	Type 2 Class 1	Type 2 Class 2	Type 2 Class 3	Type 2 Class 4
Typical Properties*							
Nominal % Tungsten	90	92.5	95	90	92.5	95	97
Binder	Ni/Cu	Ni/Cu	Ni/Cu	Ni/Fe	Ni/Fe	Ni/Fe	Ni/Fe
Nominal Density g/cm³ lb/in³	17.1 0.62	17.5 0.63	17.9 0.65	17.1 0.62	17.5 0.63	18.1 0.65	18.5 0.67
0.2% Proof Stress MPa ksi	675 100	650 95	680 100	645 95	645 95	660 95	660 95
Tensile Strength MPa ksi	805 116	830 120	805 116	875 126	900 130	910 131	915 132
% Elongation on 25mm (1")	7	9	4	25	27	22	12
Hardness, HRC	24	24	24	27	24	24	25

→ From wolfmet.com website

Genova, Jun. 2024

Commercially available example

EA Tungsten								
Alloy Grades	EA17	EA17M	EA17.5	EA17.5M	EA17.7	EA18	EA18M	EA18.5M
W Content, nom. (Wt%)	90	90	92.5	92.5	93	95	95	97
	Ni + Cu or		Ni + Cu or			Ni + Cu or		
Binder Elements	Ni + Fe	Ni + Fe	Ni + Fe	Ni + Fe	Ni + Fe +Mo	Ni + Fe	Ni + Fe	Ni + Fe
	17 nom.	17 nom.	17.5 nom.	17.5 nom.		18 nom.	18 nom.	18.5 nom.
	(16.85-	(16.85-	(17.15-	(17.15-		(17.75-	(17.75-	(18.25-
Density Gms/cc	17.30)	17.30)	17.85)	17.85)	17.7 nom.	18.35)	18.35)	18.85)
Density Lbs./cu in.	0.61	0.61	0.63	0.63	0.64	0.65	0.65	0.67
	94ksi /	110ksi /	94ksi /	110ksi /		94ksi /	105ksi /	100ksi /
Ultimate Tensile	648Mpa	758Mpa	648Mpa	758Mpa		648Mpa	724Mpa	689Mpa
Strength	min.	min.	min.	min.	Produced	min.	min.	min.
	75ksi /	75ksi /	75ksi /	75ksi /		75ksi /	75ksi /	75ksi /
Yield Strength at	517Mpa	517Mpa	517Mpa	517Mpa		517Mpa	517Mpa	517Mpa
0.2% Offset	min.	min.	min.	min.	to	min.	min.	min.
Elongation % min.	2% min.	5% min.	2% min.	5% min	Customer's	1% min.	3%	2%
Hardness (HRC)								
max. Unworked								
(As Sintered or								
Annealed)	32 max	32 max	33 max	33 max	Specifications	34 max	34 max	35 max
Coefficient of								
Thermal Expansion x 10^-6/∘C	4~6	4~6	4~6	4~6		4~6	4~6	4~6
Magnetic	+ 0	+ 0	+ 0	+ 0		+ 0	+ 0	
Properties	None	Slight	None	Slight	Slight	None	Slight	Slight
ASTM-B-777-15	Class 1	Class 1	Class 1	Class 2	N/A	Class 3	Class 3	Class 4
AMS-T-21014	Class 1	Class 1	Class 1	Class 2	N/A	Class 3	Class 3	Class 4
MIL-T-21014D	Class 1	Class 1	Class 1	Class 2	N/A	Class 3	Class 3	Class 4
	Class 1	Class 1	Class 2	Class 2		Class 3	Class 3	Class 4
AMS 7725E	Type 1	Type 2	Type 1	Type 2	N/A	Type 1	Type 2	Type 2

→ From eaglemetals.com website

Genova, Jun. 2024

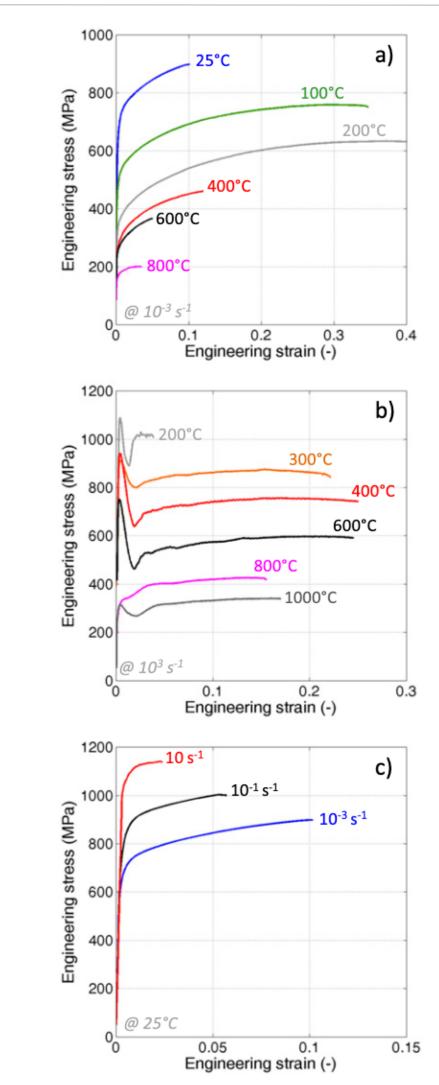
\neg Other potential suppliers

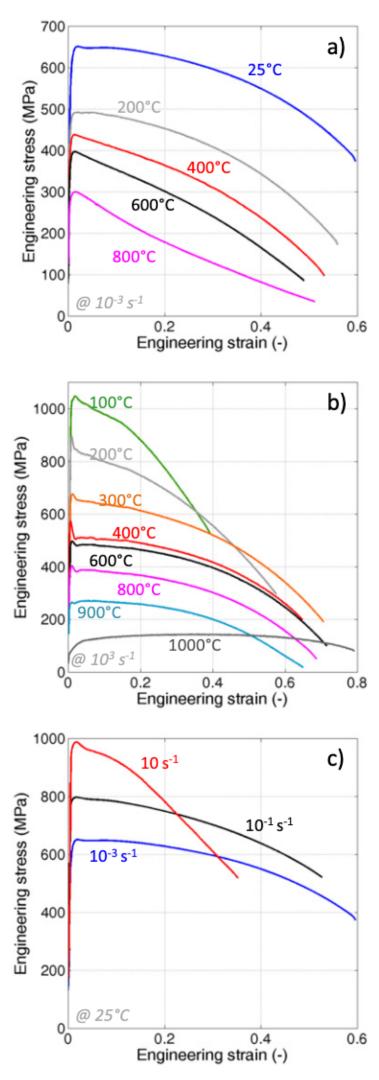
- → Ed Fagan
- \frown Elmet
- → FB Tecno (in Italy)
- → Tungco
- → Wolfram-industrie
- → Midwets Tungsten Service

 \frown . . .

- → Data I have not found
 - \neg resilience
 - → mech properties at low temperature
 - \frown magnetic permeability is usually not measured accurately

 \sim This material is intended for ballast and radiation screening, at room or high temperatures


Other things



Tungsten Molybdenum alloys

- Used mainly for high strength, high temperature and chemically challenging environments
- \neg Up to 90% tungsten (some >17 g/cc)
- \checkmark Very limited mechanical data
- \frown Possibly too expensive to be worth thinking about

Figure 3. IT180 – Engineering stress vs. strain curves: a) quasistatic loading condition varying the temperature; b) dynamic loading condition varying the temperature and c) tests at room temperature varying the strain-rate.

Figure 4. Mo1 – Engineering stress vs. strain curves: a) quasistatic loading condition varying the temperature; b) dynamic loading condition varying the temperature and c) tests at room temperature varying the strain-rate.

Tungsten Lanthanum Vanadium alloys

S280

- → Different alloys exist
- ∽ Specific gravity above 17 g/cc
- Data available down to 77 K
 Young's modulus
 flexure strength
 fracture toughness
- → Commercially available?
- → Expensive?
- → Machinable?

T. Palacios et al./Journal of Nuclear Materials 442 (2013) S277-S281

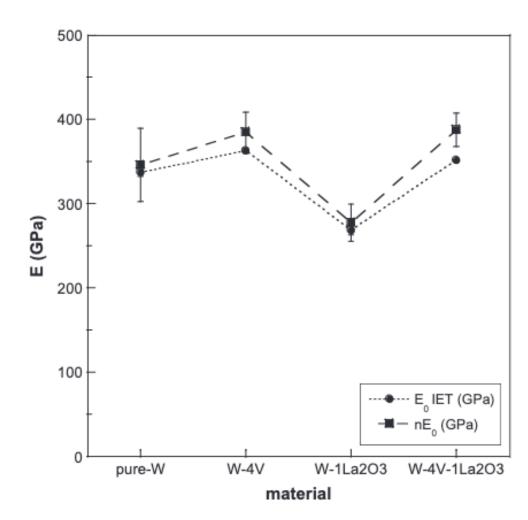


Fig. 5. Average elastic modulus of each material measured by IET and nanoindentation tests.

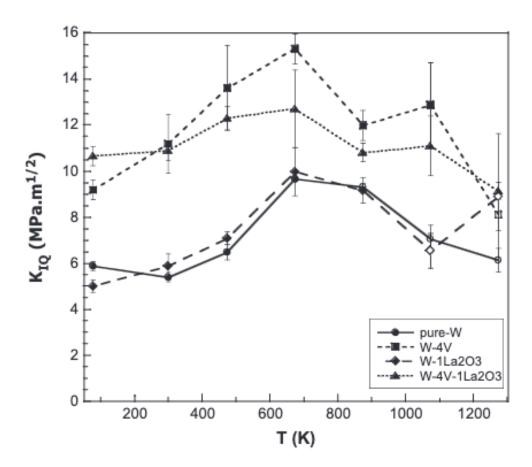


Fig. 6. Average fracture toughness versus test temperature for each material. Open symbols represent the apparent fracture toughness.

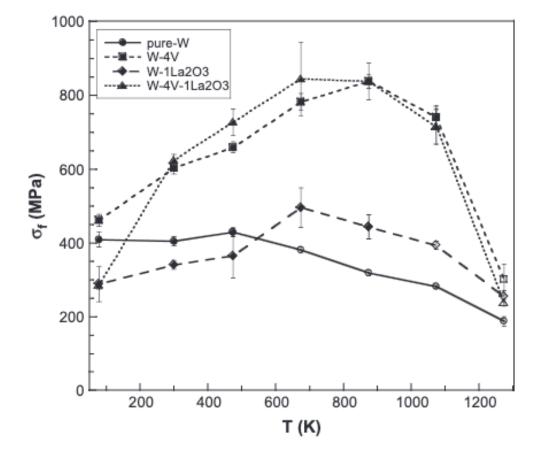


Fig. 7. Average flexure strength versus test temperature of each material. Open symbols represent the yield strength at 0.2%.

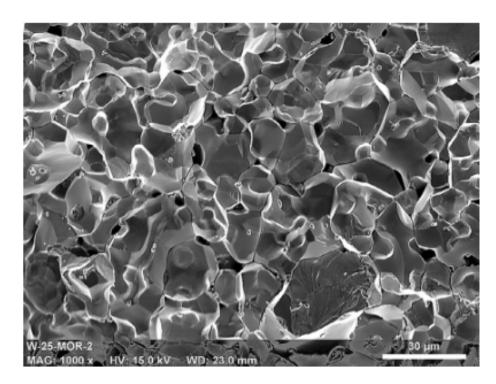
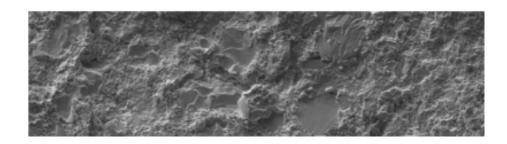
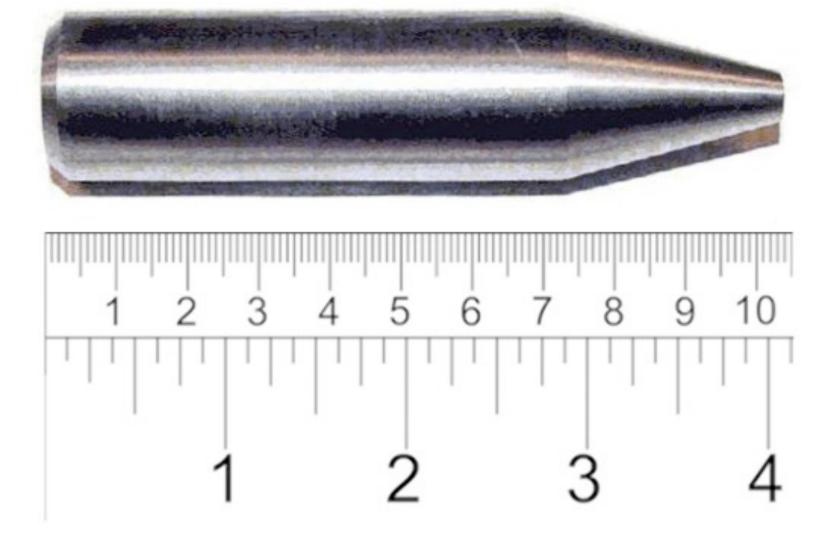



Fig. 8. Fracture surface at 298 K of pure-W.

Tungsten Boride

- ∽ Good density, 15.3 g/cc
- ∽ Boron captures neutrons
- \frown Mainly available as powder
- → Expensive, O(100 €/100 g)
- \frown Possibly available as solid bulk
- \frown No mechanical data available
- \frown Relatively new material
- \frown Used mainly as abrasive
- → Possibly useful in molten lead?

Compound Formula	BW
Molecular Weight	194.65
Appearance	Solid
Melting Point	N/A
Boiling Point	N/A
Density	15.3 g/cm ³
Solubility in H2O	N/A
Exact Mass	194.960238
Monoisotopic Mass	194.960205



3		
5 Da		

Depleted Uranium

- → Very high specific gravity (19 g/cc)
- \frown Mechanical data are available down to -40° C at least
 - \frown not this good, possibly
 - → thermal expansion similar to Nickel (in between Iron and Copper)
 - → Young's modulus ~200 GPa

 - \sim tensile strength at room temperature ~400 MPa \sim yield strength at room temperature ~200 MPa
- \frown Good machinability
- → "Widely available" (hundreds thousands tons in Western Europe)
- → Used in ZEUS calorimeter at HERA
- → Can be used as "pure" metal
- → "Mildly" radioactive
- \neg Slightly paramagnetic ($\mu \sim 1.000002$)

- \frown I am not sure on which could be the best alloy to use
- → WHA are the first choice, with some unknown on mechanical properties at low temperatures
- \sim Other W alloys are nice, but with even less data available and it is not obvious if they can be purchased in solid bulk
- → Depleted U is... depleted U

Conclusions

- <u>
 https://www.agescaninternational.com/images/</u>
 ASTM_B777-07_%20Specs%20for%20Tungsten%20Based%20High-Density%20Metal%20(1).pdf
- powders.html
- version9_HR-.pdf
- <u>https://cds.cern.ch/record/2155651/files/CERN-ACC-2015-0212.pdf</u>
- <u>https://www.sciencedirect.com/science/article/pii/S0022311513004121</u>
- <u>https://www.americanelements.com/tungsten-boride-12007-09-9</u>
- → <u>https://inis.iaea.org/collection/NCLCollectionStore/</u> Public/14/760/14760887.pdf
- → <u>https://digital.library.unt.edu/ark:/67531/metadc1113266/m2/1/high_res_d/6087232.pdf</u>
- <u>https://www.sciencedirect.com/science/article/abs/pii/0168900287909521</u>
- GOVPUB-C13-0db7cc6eaefa48f82095c56b41cabfc0.pdf

Links

<u>
 https://www.kennametal.com/us/en/products/Metal-Powders-Materials-Consumables/tungsten </u>

→ <u>https://www.wolfmet.com/wp-content/uploads/2017/01/Wolfmet-Aerospace-brochure-NEW-</u>

 <u>
 https://www.eaglealloys.com/wp-content/uploads/2017/05/EA-Tungsten-Alloy-Data-Sheet.pdf</u>
 <u>
 https://www.govinfo.gov/content/pkg/GOVPUB-C13-0db7cc6eaefa48f82095c56b41cabfc0/pdf/</u>

