solestial

Defects Induced by 1 MeV Electron and ⁶⁰Co-Gamma Irradiation in Boron-Doped Silicon

Authors: Yana Gurimskaya^{1,2}; Michael Moll¹; Niels Sorgenfrei^{1,3}, Vendula Maulerova - Subert^{1,4}, Moritz Wiehe¹

Co-authors: Alex Fedoseev², Stanislau Herasimenka², Mikhail Reginevich²

¹CERN, Geneva, Switzerland ²Solestial, Inc., Tempe, Arizona, USA ³Albert Ludwigs Universität Freiburg, Freiburg, Germany ⁴Hamburg University, Hamburg, Germany

Session Classification: WG3/WP3 - Extreme fluence and radiation damage characterization: WG3 scientific talks

CERN KT Collaboration Agreement KN5705/KT/EP/263C

p-type Si to extreme fluences

WG3/WP3: Extreme fluence and radiation damage characterization

- pursue the "acceptor removal project" to understand defect kinetics mechanisms
- measure the ratio of point to cluster defects for various particle irradiations → input to NIEL studies
- compare microscopic defect formation to macroscopic effects on Si sensors and Si solar cells for space

'Acceptor removal':

- De-activation of B as a shallow dopant with irradiation, leading to the change of N_{eff} determined by V_{dep} on the macroscopic level
- Originated from Boron-Containing Defect (BCD) formation (see presentations by <u>Andrei Nitescu</u> and <u>Kevin Lauer</u>)

Hand-by-hand with <u>NIEL project</u> (see presentation by <u>Vendula Maulerova-Subert</u>)

AIM: Evaluation of the concept to produce a 2-parameter NIEL scaling, i.e. two 'hardness factors' coming up for point and cluster defect formations able to describe the macroscopic 'NIEL violation' observations and to develop universal TCAD defect model combining proton, neutron and electron damage

Primary displacement damage in Si

Damage mechanism

Non-ionising damage results from direct collisions of incident particle with atomic nuclei of the crystal lattice, creating primary defects via such mechanisms:

Vacancy

Defect formation simulations

Primary defects homogeneously scattered over large volume.

Primary defects densely clustered in small volume.

Initial distribution of vacancies produced by 10 MeV protons, 23 GeV protons and 1 MeV neutrons. The plots are projected over 1 μ m depth (z) and correspond to a fluence of 1E+14 particles/cm².

DOI: 10.1016/S0168-9002(02)01227-5

Going less complex:

Damage exclusively attributed to point defects:

- 60 Co gamma rays (Compton electron with E_{max} of 1 MeV)
- 1 MeV electrons (space conditions)

Interstitial

I-DLTS looks into the current transient by carrier emission in a time scale of milliseconds (TSC - seconds, different filling procedure). TSC and I-DLTS can be <u>complementary</u> to each other by means of defect identification. Both - current-based microscopic defect analysis methods.

Find the <u>microscopic origin</u> of the macro effects of radiation damage such as *I*_{leak}, trapping and doping

CZ pad diodes of 120 Ω cm irradiated with 1 MeV electrons

- Bias voltage up to 300V;
 - Appearance of defects with
 T-dependent σ by T_{fill} variation multi-phonon capture process;
 - 'Full' concentrations;
- Noise;
- High I_{leak} from 180K.

- Can detect shallow defect levels, at least 8 in total;
- Arrhenius in one T-scan;
- Separate type of carriers;
 - Amplitude of transient is T-dependent.

 Terrific sensitivity, at least 7 defect levels in total;

- No need to fully deplete device;
- Separate type of carriers;

(+)

- Limitation: $N_{\tau} \ll N_{s}$;
- Carrier freeze-out.

Test structures

Sensor name	Thickness, µm	Fluence, e/cm ²	Facility
CZ-03-72	50	5E+14	MP
CZ-03-71	50	1E+15	MP
CZ-06-54	150	1E+14	CEA
CZ-06-67	150	5E+14	CEA
CZ-06-81	150	1E+15	CEA
CZ-03-48	350	1E+14	MP
CZ-03-51	350	5E+14	MP
CZ-03-49	350	1E+15	MP
CZ-03-92	50	200 kGy	RBI
CZ-03-93	50	1 MGy	RBI

Example of <u>C-DLTS</u> measurements

Identical defect levels are detected for all *e*-irradiated test structures from both facilities for all thicknesses, defect concentrations (~peak amplitudes) increase with fluence

Example of <u>DLTS</u> analysis

solestial DRD3 CERN

T-dependent capture cross section and Poole-Frenkel effect

Reverse capacitance – compensation for CZ

Measurements are performed at 1MHz frequency during DLTS scan - defect cannot follow and 'freeze out'

Example of <u>TSC</u> measurements

Majority carrier injection \rightarrow hole traps

Integration over the peak gives us charge \rightarrow defect concentration, see slide 13 for summary

Example of <u>I-DLTS</u> measurements

Can detect at least 8 defect levels, has power of C-DLTS but gives under-estimation in concentrations ←T-dependent I-DLTS amplitude

Data comparison over 3 methods for 1E+15 e/cm² fluence

E _{a_DLTS} , eV	$\sigma_{\rm DLTS}$, cm ²	N _{t_DLTS} , cm ⁻³	E_{a_I-DLTS} , eV	σ_{1-DLTS} , cm ²	N _{t_I-DLTS} , cm ⁻³	N _{t_TSC} , cm ⁻³	Defect	Y
			0.031	3.4E-15	1.8E+12			yes
0.052	-	9.4E+11	0.048	2.5E-15	5.2E+11			yes
0.098	1.9E-14	3.1E+12	0.092	1.6E-14	1.7E+12	3.1E+11	V ₃ ^(2+/+)	yes
0.132	2.4E-13	2.9E+12	0.126	9.2E-14	2.5E+12			no
0.19	1E-15	-					V ₃ ^(+/0)	-
0.194	4.7E-16	4.5E+12	0.193	4.6E-16	2.7E+12	2.8E+12	V ₂ (+/0)	yes
0.334	6.6E-16	8.5E+12					C _i O _i *	-
0.362	2.5E-15	5.1E+13	0.357	1.8E-15	2.2E+13	2.21E+13	C _i O _i ^(+/0)	yes
0.238	3.7E-15	2.8E+12	0.243	1.57E-15	2.7E+12	1.74E+12	B _i O _i ^(0/-)	yes

<u>Markevich et al</u>, V3 and V3-O family of defects in Si (2014) <u>Makarenko et al</u>, Formation of bistable I-complex in irradiated p-Si (2019)

- Good match over 3 techniques for isolated point defect levels but not for superimposed defect signals, have to be treated with care.
- Isochronal annealing (and/or forward current injection annealing) planned.
- Optical injection is in implementation.

Ratios of introduction rates for dominant defects after 1 MeV electrons and ⁶⁰Co-gammas

Fluence[e/cm ²]	$\frac{[B_i o_i^{(+/0)}]}{[C_i o_i^{(+/0)}]}$	PRELIMINARY
1E+14	0.068	
5E+14	0.0558	•
1E+15	0.0561	•
Dose [10 ⁶ Gy]	$\frac{[B_i o_i^{(+/0)}]}{[C_i o_i^{(+/0)}]}$	
0.2	0.211	•
1	0.159	

- For electron irradiation ratio B_iO_i/C_iO_i is fluence independent, ~0.06.
- For γ -irradiation: dose dependence \rightarrow higher dose less B_iO_i relatively to C_iO_i .
- For EPI (γ): 250 Ω cm IR_{BiOi} and IR_{CiOi} almost equal, 50 Ω cm IR_{BiOi} is higher than IR_{CiOi}. [<u>A.Himmerlich, 40th RD50 Workshop</u>]

- It was shown that radiation damage is a complex process not yet fully understood;
- A combination of several experimental methods (TSC, TS-Cap, I-DLTS, C-DLTS, others) is essential to investigate microscopic defect formation for various particle irradiations especially at high fluences and for high resistivity material;
- Isochronal annealing and forward current injection studies are planned;
- Optical injection option should be implemented to overcome the drawback of uncertainties in traditional voltage pulse filling with forward bias *I*_{fill} in both I-DLTS and TSC;
- Full hardware and software in place, problem with LED triggering to be solved.

Thank you!