Comparison of X-ray radiation damage for different oxide types in HGCAL silicon sensors prototypes

Pablo Álvarez Domínguez (ETH Zürich, CERN), Matteo Defranchis (CERN), Leena Diehl (CERN)

on behalf of the CMS collaboration

Motivation and history

- HGCAL silicon sensors produced by Hamamatsu (HPK)
 - First 8-inch p-type sensors used in a particle detector
 - Radiation hardness qualification needed for bulk and **oxide**
 - Oxide radiation hardness important for cell isolation
- In the 8-inch prototype phase (2018–2022), HPK provided amongst others 10 oxide variants
 - \circ First prototypes had -5V flat band voltage (V_{fb})
 - HGCAL wished to mimik CMS outer tracker sensors which are well established in terms of radiation hardness, with V_{fb}=-2V
 - HGCAL production started using so-called Type C with V_{fb}=-2V, (best performance among provided oxide variants)
 - In parallel to production start in 2023, HPK proposed **Type C'** (more similar to tracker sensors, also in terms of p-stop resistance)
 - **Fast track qualification** needed of new oxide variant to be relevant for production

Sensor design

Strip sensors

SOM

P. Á. Domínguez, 06/2024, X-ray irradiation of HGCAL wafers

CMS

3

Sensor variants

HGCAL 8-inch:

) 	Vfb	p-stop	oxide quality improvement	p-stop concentration	comment	
А	-5V	common	STD	STD	not improved Vfb & STD condition (for ref.)	
В	-2V	common	STD	STD	improved Vfb with special masking method	
С	-2V	common	thermal condition change	STD	(for ref.) production condition	
C'	-2V	common	thermal condition change	STD*	more close to 6" line than type C	
D	-2V	common	combination of B and C	STD	CMS required condition	
E1	-2V	common	thermal condition change	x2.5	conbination C and p-stop concentration	
E2	-2V	common	thermal condition change	x5.0		

*MOSFET measurements indicate higher p-stop concentration in Type C' than in Type C

HGCAL 8-inch:

• 300 μ m float zone (FZ), V_{dep} = ~270V

HGCAL 6-inch:

 320µm physical thickness, 290µm active thickness, deep diffused float zone (dd-FZ)

CMS outer tracker (6-inch):

- Sample from PS-s wafer from the pre-production (series \$15569-01)
- 320µm physical thickness, 290µm active thickness, deep diffused float zone (dd-FZ)

Sample irradiation in ObeliX (CERN)

- Effect of trapped charge:
 - 1. Increase in $V_{flatband}$ in MOS
 - 2. Increase in surface current in GCD
- Measurement procedure:
 - X-ray irradiation and in-situ measurements at <1% relative humidity and -20 °C
 - \rightarrow Crucial to control annealing
 - Dose rate = 14 kGy/h
 - One of the two MOS biased with +10 V in order to study the radiation damage in the presence of an **electric field**

P. Á. Domínguez, 06/2024, X-ray irradiation of HGCAL wafers

MOS

Comparison to benchmark sensors: MOS

CMS HGCAL Preliminary

Convert $V_{flatband}$ into oxide charge density $N_{oxide} = \frac{C_{oxide}}{qA_{aate}} (\phi_{ms} - V_{FB})$

EMS

- Type C compared to HGCAL 6" prototypes and CMS outer tracker (benchmarks), obtained with the same procedure
- <u>×10</u>12 ×10¹² Oxide charge density (cm⁻²) V_{bias}=10V 12 12 Floating MOS **Biased MOS** - FZ, std, -5.1V 10 10 FZ. std. -2.2V - FZ. std. -2.2V 8 8 6in HGC. -4.7V 6 6in HGC. -4.7V 6in TRK. -2.3V 6in TRK. -2.3V FZ, New Type C, -2.4 10² 10^{2} 10 10 Dose (kGy) Dose (kGy)

CMS HGCAL Preliminary

- Comparable performance and trend in the absence of electric field
- Type C performs better in the presence of an electric field
- -> In both cases, better performance compared to V_{fb} = -5V prototypes

MOS results for type C-prime (Aug '23)

- Differences between Type C' and Type C within the experimental resolution (around 5%)
- This motivates the need to perform complementary studies with **micro-strips**

Interstrip C and R with micro-strips sensors

- Strips biased via bias ring, connected via punch-through
- X-ray irradiation and in-situ measurements performed as for MOS
- Measurements
 - Interstrip resistance and capacitance Ο

P. Á. Domínguez, 06/2024, X-ray irradiation of HGCAL wafers

Inter-strip measurement circuits

Inter-strip resistance

Inter-strip capacitance

Interstrip-R extraction from IV

Interstrip current vs interstrip voltage curves for a C-prime 300µm sensor using a fixed radiation dose and different bias voltages (left) and fixed bias voltage and different radiation doses (right). The dashed line corresponds to the linear fit.

Interstrip-R extraction from IV

For small irradiation doses (and low bias voltages) we observe that the behaviour is not linear -> we will adopt an ad-hoc solution for this, or discard the dose point

IMS

- Around x2 higher R for Type C' when compare to Type C in line with higher initial p-stop concentration
- Around x100 higher R for Type E1 due to the higher concentration of p-stops

Trends vs dose and V are **similar between type C and C'** => no clear preference between the two

IMS

Summary

- **Goal**: Identify best oxide process for HGCAL production silicon sensors
- Investigation of **oxide radiation damage** as a function of the absorbed dose
- In-situ measurement procedure allows to obtain **excellent reproducibility** of the result
- Comparison of production process candidates Type C and Type C'
 - MOS irradiation (floating and biased)
 - No clear difference
 - Inter-strip resistance
 - Not directly comparable because of different p-stop
 - Same rate of degradation as a function of the dose -> no clear preference
- Production of HGCAL silicon sensors had started with Type C before the studies were completed
- No practical advantage to moving to **Type C'** from **Type C**, considering
 - More extensive qualification of Type C at HPK and in CMS (e.g. pre-production)
 - Decided to stick to Type C for the rest of the HGCAL production
- **Type C'** interesting candidate for future silicon detector projects using 8-inch p-type sensors

BACKUP

Effect of SiO₂ damage on interstrip properties

- Radiation damage in silicon oxide creates charge accumulation in border region + recombination current at the Si-SiO₂ interface
- This favours the formation of an electron accumulation layer (n) that degrades the isolation properties between neighbouring cells (n+ implants)
 - partially mitigated by dedicated p-stop implants
- These effects can be studied using dedicated test structures with MOS and micro-strip sensors (see next slides)

Illustration by Jan-Ole Müller-Gosewisch (KIT)

The X-ray setup @ ObeliX

P. Á. Domínguez, 06/2024, X-ray irradiation of HGCAL wafers

CMS Outer tracker wafer and test structures

P. Á. Domínguez, 06/2024, X-ray irradiation of HGCAL wafers

Geometry and normalization

HGCAL tracker-like strip sensor: 100µm pitch, ~23.5mm strip length, 60 strips

	LHGCAL HALFMOOK_SU V-2020-121	
(-)		ana
	22 Emm	
	23.51111	
(14-111-14)	87-1600 (127-8165) (U.1.1) (888,888	,

Tracker strip sensor test structure

100µm pitch, ~15.5mm strip length, 128 strips

- \cdot Current flow is **perpendicular** to strip length
- · Geometric normalization of results by accounting only for the strip length:
 - Resistance · Length
 - Capacitance / Length

P-stop concentration

P-stop studies conducted by Thomas Bergauer, Suman Chatterjee, Marko Dragicevic, Kostas Damanakis, Ioannis Kopsalis, Veronika Kraus (HEPHY)

- Higher doping concentration observed for Type C' compared to Type C
- Slightly smaller concentration for CMS Tracker than for Type C'

Expected results: \uparrow **p-strop** concentration \Rightarrow \uparrow **Resistance**

CMS

Interstrip resistance vs radiation dose for type C (left) and C-prime (right) 300µm sensor using different bias voltages above full depletion

CMS HGCAL Preliminary

Interstrip-R: Long irradiation up to 1MGy

• Measured R_{int} well above the $10^8 \Omega$ benchmark for V_{bias} > 400 V at 1 MGy

Interstrip-R: Long irradiation up to 1MGy

• Measured R_{int} well above the 10⁸ Ω benchmark for V_{bias} > 400 V at 1 MGy

Interstrip-C: Long irradiation up to 1MGy

- Measured C_{int} almost constant for large values of radiation dose (no degradation observed)
- Consistent results within 1% between short and long irradiation campaigns

MOS: Results for new types A-D

Oxide charge density [cm⁻²]

Dose [kGv]

10

Open correction for C_{int}

Open capacitance driven by $C_5 = 47 \text{ pF}$ in decoupling box connected to LCR meter

- Measured $C_{open} = 49.7 \text{ pF}$ (consistent with $C_5 = 47 \text{ pF}$ of design sheet)
- Simplified correction $C_{corr} = C_{meas} C_{open}$ Open correction derived for each LCR frequency

Summary including CMS Tracker

Comparison of production process candidates Type C, Type C' and CMS tracker

- MOS irradiation (floating and biased)
 - **Comparable results** in **MOS** measurements for all oxides
- Inter-strip resistance
 - Slightly higher inter-strip resistance for Type C' compared to Type C. CMS tracker very similar to Type C.
- Inter-strip capacitance
 - Lower inter-strip capacitance in type C and C' compared to CMS tracker sensors

Results: Interstrip-C vs dose and vs V_{bias}

- Same performance of Type C, C' and E1 (differences smaller than 1%, which is the same order of magnitude of the measurement reproducibility)
- CMS Tracker offered a capacitance around 30% larger

Samples of strip sensors

	Copies	Maximum dose [kGy]	Comment]
Туре С	"(1), (2)" "(3)"	200@14.3kGy/h 1000@24.3kGy/h	Production sensors so far	
Туре С'	"(1), (2)"	200@14.3kGy/h	Proposed by HPK, closer to tracker, higher p-stop concentration than Type C	1
Type E1	"(1)"	200@14.3kGy/h	Type C with 2.5x p-stop concentration	
CMS outer tracker	"(1)"	200@14.3kGy/h		

HGCAL:

• all 300 μ m float zone (FZ), V_{dep} = ~270V

CMS outer tracker:

- Sample from PS-s wafer from the pre-production (series S15569-01)
- 320µm physical thickness, 290µm active thickness, deep diffused float zone (dd-FZ)

30314		Vfb	p-stop	oxide quality improvement	p-stop concentration	comment
800µm	A	-5V	common	STD	STD	not improved Vfb & STD condition (for ref.)
	В	-2V	common	STD	STD	improved Vfb with special masking method
[С	-2V	common	thermal condition change	STD	(for ref.) production condition
	C'	-2V	common	thermal condition change	STD	more close to 6" line than type C
	D	-2V	common	combination of B and C	STD	CMS required condition
	E1	-2V	common	thermal condition change	x2.5	
	E2	-2V	common	thermal condition change	x5.0	continuation C and p-stop concentration

P-stop resistance for each condition

Type C' is about 20% lower than type C.

Flatband voltage for each condition

