

On-going studies on diminishing the acceptor removal effect by tuning the charge state of Boron containing defects in p-type irradiated PAD samples

Andrei NITESCU, Ioana PINTILIE, Cristina Besleaga STAN, Lucian Dragos FILIP, George Alexandru NEMNES

June, 2024

The *bistable behavior* of a Boron Containing Donor (BCD) related to acceptor removal (AR) effect observed in high resistivity PAD and LGAD samples^{1,2}

293K

H(116K)

110

10

· 30

25

15

120

(PA)

SC

12

1). C. Besleaga, et al, Bistability of the BiOi complex and its implications on evaluating the acceptor removal process in p-type silicon, Nucl. Instrum. Methods Phys. Res. A 2021, 1017, 165809. DOI: /10.1016/j.nima.2021.165809; 2). A. Nitescu et al. "Bistable Boron-Related Defect Associated with the Acceptor Removal Process in Irradiated p-Type Silicon—Electronic Properties of Configurational Transformations". Sensors **2023**, 23, 5725. <u>https://doi.org/10.3390/s23125725</u>; 3). Chuan Liao et al, IEEE TRANSACTIONS ON NUCLEAR SCIENCE **2022**, 69 (3), pp.576-586, **DOI:** <u>10.1109/TNS.2022.3148030</u>; 4). Möller, C.; Lauer, K. Light-induced degradation in indium-doped silicon. *Phys. Status Solidi RRL* **2013**, 7, 461. <u>DOI:</u> /10.1002/pssr.201307165; 5). K. Lauer, et al, Activation energies of the In_{si}-Si_i defect transitions obtained by carrier lifetime measurements. *Phys. Status Solidi C* **2017**, 14, 1600033. DOI: /10.1002/pssc.201600033

High resistivity PAD and LGAD samples

W5-LGB-72P $oldsymbol{
ho}=\mathbf{12}\ k\Omega cm$ $\phi=1E14\ n/cm^2$ Guardring grounded W3-LGB-71 $oldsymbol{
ho}=\mathbf{12}\ k\Omega cm$ $\phi=1E14\ n/cm^2$ Guardring grounded

Reversible switch between the two charge configurations of BCD

As seen in CV measurements^{1,2}

V_{dep} V_{dep} A to B B to A PAD PAD 10²¹ 10²¹ LGAD LGAD $1/C^{2}(F^{-2})$ $1/C^{2}(F^{-2})$ 10²⁰ 293 K 293 K time under 0 V: I_{Ew}= 5.7uA for: – 0 min 0 min 30 min 10¹⁹ 10¹⁹ 10 min 62 min 30 min 126 min 70 min 254 min 150 min 510 min (b) (a) 310 min 1022 min 10¹⁸ -10¹⁸ 10 100 10 100 Reverse bias (V) Reverse bias (V)

12 kohm·cm PAD and LGAD irradiated with 10¹⁴ 1MeVn/cm², long time annealed at 80 °C

A to B:

- by producing an excess of carriers in samples
- Leads to an increase in V_{dep} (with ~6.3 V)

B to A:

- by keeping the sample in the dark
- V_{dep} returns back to its equilibrium value

Reversible switch between the two charge configurations of BCD

<u>As seen in TSC measurements^{1,2}</u> - possible only via monitoring the concentration of BCD^A

12 kohm·cm PAD and LGAD irradiated with 10^{14} 1MeVn/cm²

The changes from $A \rightarrow B$ is due to the excess of charge carriers. This excess of charge carriers can be stimulated through different methods: - Thermal treatments (at T<80°C)

- FW current injection
- Light exposure

BCD defect kinetics, as seen in high resistivity samples²

It is possible to tune the defects configurations for *minimizing the AR effect by switching the defect from* **BCD**^{A+} to BCD_B^0 – diminishing the contribution of **A** state which is accounted twice in g_B !

• Does BCD's bistability manifest also in samples of lower resistivity ?

Samples of different resistivity (annealed 120min@60°C)

Results on the samples of different resistivity (50 Ω ·cm, 250 Ω ·cm and 12 k Ω ·cm), $\phi = 1E14 n/cm^2$

The efficiency of switching the defect' charge configuration is increasing with the sample' resistivity

• Why can be reactivated more acceptors in high resistivity than in low resistivity samples after the same small Fw current injection ?

The volume in which the density of free electrons is larger than that of holes increases with resistivity \rightarrow the change of the BCD configuration from A to B (with some recovery of acceptors) after small Fw current injection is observed in high resistivity diodes.

• Are other bistable effects that may overlap to that of BCD ?

- yes, we know that the cluster related hole traps, responsible for the magnitude of reverse annealing in n-type Silicon, show a bistable behavior after high irradiation levels

Bistability of H(116 K), H(140 K), and H(152 K) defects and corresponding change in V_{dep} of a 300 μ m thick STFZ diode irradiated with 27MeV electrons, Φ =10¹⁴ cm⁻² (type inverted) and annealed for 3960 min at 80 C: (a) TSC spectra; (b) C-V curves measured with a frequency of 10 kHz and 0.5V small ac signal;

As acceptors in the lower part of the gap the impact of H116K, H140K and H152K clusters on N_{eff} in p-type Silicon is opposite to that of BCD (donors in the upper part of the gap)

Annealing studies on 12 k Ω cm PAD samples

We know that: - BCD defect dissociates in (160° C - 200° C) the temperature interval⁴ - H116K, H140K and H152K continue forming

- During annealing, V_{dep} increases both, in eq. conditions and after small Fw injection

While after annealing at 180^o C an increase of ~ 10 V in V_{dep} is measured , only a 6.3 V can be attributed to the dissociation of BCD, the rest is due to the H116K, H140K and H152K defects

Annealing studies on 12 k Ω cm PAD samples

TSC experiments

- before the annealing the observed bistability is mainly due to BCD ($\Delta V_{dep} \approx 6.3 \text{ V}$)
- after annealing at 180°C (where BCD signal vanishes) the amount of *H-type cluster defects* increases twice becoming the main source for the observed bistabilities (ΔV_{dep} ~ 4 V)

Conclusions

- The acceptor removal effect can be minimized by switching the BCD from its stable, positively charged configuration A, to the neutral one B. Such a process is very efficient in high resistivity p-type Silicon.
- The more favorable B state can be achieved by small injection of carriers. The B state froze-in at 253K.
- Isochronal annealing at temperatures below 200 °C reveals that also the cluster defects, acceptors in the lower part of the gap, manifest bistability – small Fw injections increase the negative charge stored on these defects and so, their bistability can also be used to minimize the acceptor removal effect.
- The study on *H116K, H140K and H152K* clusters just started and will continue for establishing the kinetics behind bistability and whether the more favourable configuration with respect to AR effect can be frozen-in

Thank you for your attention!