

100µPET MAPS stack:

3D pixels enabling ultra-high resolution PET imaging

1st DRD3 week - WG7/WP4
19 June 2024

Mateus Vicente (UNIGE) on behalf of the 100µPET collaborators

Introduction (1/3)

Positron Emission Tomography (PET)

myicenfe@cern.ch

- PET is a nuclear medicine method to study metabolic processes in the body
 - A Radiotracer (typically 18FDG) is injected in the body;
 Positrons from the radionuclide annihilates with electrons of the nearby tissue;
 Two back-to-back 511 KeV photons are emitted and detected in coincidence
 - <u>Lines-of-Response (LoR)</u> are defined by the <u>volume between</u> the <u>sensitive elements</u> detecting the two photons, and the LoRs are processed to generate density maps of the detected annihilations
 - Today, due to the lack of spatial resolution, PET imaging must be done in hybrid mode (combining MRI or CT measurements)

Overview of current small animal PET scanners

MRI

Introduction (2/3)

Positron Emission Tomography (PET)

3

mvicente@cern.ch

- Current PET scanner technology employs arrays of scintillating crystals with typical size $\gtrsim 1 \, \text{mm}^3$
 - Small blood vessels can only be visualized in their entirety (A).
- To access ultra-high resolution molecular imaging, one must **reduce the LoR volumes** by exploiting:
 - Better timing resolution for coincidence measurement (TOF-PET), or increased <u>detection volume granularity</u>

Crystals 4x4x20 mm³ 3x3 APD array

Sensor granularity: 320 mm³

DOI: 20 mm

PET tower with LSO crystals

Introduction (3/3)

Positron Emission Tomography (PET)

mvicente@cern.ch

- Current PET scanner technology employs arrays of scintillating crystals with typical size ≥ 1 mm³
 - Small blood vessels can only be visualized in their entirety (A).
- To access ultra-high resolution molecular imaging, one must reduce the LoR volumes by exploiting:
 - Better timing resolution for coincidence measurement (TOF-PET), or increased detection volume granularity
- The 100µPET SNSF Synergia project: UNIGE (scanner production) EPFL (imaging reconstruction) and UNILU (medical study)
 - Ultra-high resolution imaging by employing multi-layer stacks of monolithic pixel detectors, allowing the study of changes in small blood vessels, as atherosclerotic plaques (B)

PET tower with LSO crystals

DOI: 20 mm Sensor granularity: 320 mm³

Images: © Xavier Ravinet - UNIGE

100µPET stack

Pixel pitch: 150 µm | DOI: 550 µm Sensor granularity: 0.012 mm³

The 100µPET scanner

ASIC, module/layer, tower

mvicente@cern.ch

- Multi-layer stack of CMOS imaging sensors
 - □ 100μPET MAPS: 130 nm SiGe BiCMOS; 2.3 x 3 cm²; 150 μm pixel pitch; 270 μm thick; ~0.5W power (ETA Aug-Sep)
 - Designed foreseeing flip-chip bonding, the size and pitch of the bonding pads allows integration with standard PCB/FPC production
 - Single silicon detection layer composed by 2x2 ASICs flip-chip to a flex printed circuit, covering 24 cm²
 - 60 detection layers compose each scanner tower, with 4 towers per scanner (for a grand total of 960 chips!)

L.	
Event rate	10 kHz/cm ²
Equivalent Noise Charge (ENC)	200 [e-]
Operation Threshold	3000 [e-]
Time resolution RMS (Qin > 7 ke-)	200 [ps]
ToA	Yes, 1 pixel/event
ТоТ	Yes, for ToA time walk correction
Power consumption	< 100 [mW/cm ²]

mvicente@cern.ch

- Performance simulations with (Geant4 + AllPix²)
 - Scanner geometry (silicon chips, flex, cooling block) + scatter water volume
 - [18F]FDG positron spectrum (<u>positron range</u> and photons <u>acollinearity</u>)
 - Photon interactions + sensor/ASIC response + pixel clustering
 - No time information (event based) and no energy window used
 - Positron sources: Single point; Derenzo phantom; High resolution medical images

Performance simulations (2/3)

mvicente@cern.ch

- **Performance** simulations with (Geant4 + AllPix²)
 - Scanner geometry (silicon chips, flex, cooling block) + scatter water volume
 - [18F]FDG positron spectrum (positron range and photons acollinearity)
 - Photon interactions + sensor/ASIC response + pixel clustering
 - No time information (event based) and no energy window used
 - Positron sources: Single point; Derenzo phantom; High resolution medical images
- Expected performance:
 - Sensitivity: 3.1 / 5% (with / without bismuth)
 - Point spread function: **0.21-0.24 mm** / 0.28-0.30 mm (w/wo bismuth)
 - Valey-to-peak ratio: 0.57 for 0.25 mm rods, 0.25 for 0.5 mm rods)

x [mm]

p = 0.5 mm, no bismuth,

Reference scanner \sim state of the art

Performance simulations (3/3)

myicente@cern.ch

- Performance simulations with (Geant4 + AllPix²)
 - Scanner geometry (silicon chips, flex, cooling block) + scatter water volume
 - [18F]FDG positron spectrum (<u>positron range</u> and photons <u>acollinearity</u>)
 - Photon interactions + sensor/ASIC response + pixel clustering
 - No time information (event based) and no energy window used
 - Positron sources: Single point; Derenzo phantom; High resolution medical images
- Expected performance:
 - Sensitivity: 3.1 / 5% (with / without bismuth)
 - Point spread function: **0.21-0.24 mm** / 0.28-0.30 mm (w/wo bismuth)
 - Valey-to-peak ratio: 0.57 for 0.25 mm rods, 0.25 for 0.5 mm rods)
 - Mouse phantom from <u>Digimouse PET</u> and <u>atherosclerotic plaque microCT</u>
 - Simulations and reconstruction ongoing

100µPET flip-chip module

Flip-chip testing

9 myicente@cern.ch

- A modular and compact scanner design is achieved with ASIC/flex flip-chip assembly
 - ACF/ACP and NCP flip-chip was investigated with dedicated test assemblies with 400-500 bonding pads
 - Pad-wafer produced at CMi-EPFL: 525 µm thick, Ti/Al metal patterning, Au stud bumped
 - Flex to probe flip-chip bonding yield: 4 layers, ~180 µm total thickness, ENIG pad finishing
 - Flip-chip machine for the thermocompression using an epoxy adhesive (Araldite 2011),
 20 kgf bonding force and 100 °C for 7 minutes

Glue dispensing and bonding

Pads and gold stud

Bonding pads

Flip-chip qualification tests

mvicente@cern.ch

- 100% yield connection among hundreds of pads П
- (Direct) Current stress-tests to verify bonding failure
 - Limit DC to 200 mA, avoiding local heating exceeding Tg of the glue (60-80 °C)
 - Visible permanent defects (hot spots higher bonding resistance) after reaching 300 mA
- 100 TCs from +5 to +60 °C
 - No effect on connections

mvicente@cern.ch

100µPET MOLECULAR IMAGING AT ULTRA-HIGH RESOLUTION

100µPET pre-production

- Test-chip with the same dimensions, electronic interface and power consumption (resistance heater)
- Test-flex with the same dimensions, circuit stack-up and tail connection to MAB
- Validation of module <u>assembly</u>, layer <u>stacking</u>, <u>cooling</u> performance and back-end <u>connections</u>

100µPET module demonstrator

FACULTÉ DES SCIENCES

UNIVERSITÉ DE GENÈVE

Design and production

- 240x 300 µm thick test chips:
 - 4x 4-point bond-resistance, 1x resistive heater (1 μm thick Al), 2 RTDs (PT1000-ish), 1x 162-pads chain and 1x 82-pads chain
 - 4x 4-inch wafers produced at NMP-FCBG and 15x 6-inch wafers from CMi (no RTDs)

60x test flex (+ 2x beck-end prototype system)

3x Resistive Temperature Detectors

5x Bond Resistance (4-wires)

4x Heaters in series

8x Chains (4x w/ 162 pads, 4x w/ 82)

100µPET module demonstrator

Reference module

myicente@cern.ch

- Bonding reference module with flip-chip machine
 - We are putting in place the data-base tracking, handling the temporary storage, module quality control tests and etc

100µPET module demonstrator

DE GENÈVE

FACULTÉ DES SCIENCES

1001PET

MOLECULAR IMAGING AT

ULTRA-HIGH RESOLUTION

UNIVERSITÉ

mvicente@cern.ch

Reference module characterization

■ Bond resistance of ~10 mOhm and uniform over module's 4 corners and center

- Chains of pads indicating no open connection in \sim 1000 pads (**bonding yield >99.9%**)
- Heater system is working as expected, with 8° C increase in temperature at nominal module power (2W)

Summary and conclusions

myicenfe@cern.ch

- Potential <u>ultra-high-resolution molecular imaging</u> using MAPS
 - **5**% and 3.3% scanner sensitivity (w/ or w/o Bismuth layer)
 - 0.21 mm FWHM PSF → 00.017 mm³ volumetric resolution
- ASIC designed within the UniGE DPNC group

15

- Development of module construction technique based on flip-chip bonding for minimal packaging
- Flip-chip bonding qualified with test-chips
 - Characterization tests indicates good yield and reliability
- Module and Tower demonstrators under construction
 - Module reference assembled and tested. Next...
 - 2nd module with RTD (for calibration procedure)
 - Stacking of first layers into a tower
 - Electronic back-end services and cooling system

