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Garfield++ is an open-source Monte Carlo toolkit developed for detailed simulations of particle detectors, utilizing ionization 

measurements in both gases and semiconductors.

It builds upon the foundation of the widely-used Fortran program Garfield (R. Veenhof), which has been extensively used for 

simulating gas-based detectors.

Introduction
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Microscopic simulation of electron avalanches in a GEM (left) and around a wire (right). Drift lines from a Monolithic silicon sensors.

J. Hasenbichler

J. Hasenbichler, PhD thesis (2021): 

https://doi.org/10.34726/hss.2021.63185

https://doi.org/10.34726/hss.2021.63185


The further development of Garfield++ is a community-

driven undertaking, with new contributions to the main 

branch being reviewed by a small group of “maintainers”.

We will provide a brief overview of the simulation 

capabilities of this toolkit by covering some key examples.

Outline:

• Primary ionization

• Charge transport

• Signal induction

• Charge amplification (LGAD and SPAD)

• Time-dependent weighting potentials 

• Summary
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GitLab: https://gitlab.cern.ch/garfield/garfieldpp

User guide: https://garfieldpp.web.cern.ch/documentation/UserGuide.pdf

Introduction

Garfield++ webpage: https://garfieldpp.web.cern.ch/garfieldpp/

https://gitlab.cern.ch/garfield/garfieldpp
https://garfieldpp.web.cern.ch/documentation/UserGuide.pdf
https://garfieldpp.web.cern.ch/garfieldpp/


The primary ionization pattern resulting from the energy transfer from the incident particle to the sensitive medium can be 

simulated using Garfield++ for:
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Primary ionization

Pion (180 GeV/c)

• Charged relativistic particle using the interface with Heed, based on 

an extended version of the PAI model.

I. Smirnov, Heed-C++: http://ismirnov.web.cern.ch/ismirnov/heed.

http://ismirnov.web.cern.ch/ismirnov/heed


The primary ionization pattern resulting from the energy transfer from the incident particle to the sensitive medium can be 

simulated using Garfield++ for:
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Primary ionization

Simulated charge deposition spectrum Inverse mean free path 

Pion (180 GeV/c)

• Charged relativistic particle using the interface with Heed, based on 

an extended version of the PAI model.

• X-Ray photoabsorption using the interface with Heed.

• Ion track using simulation imported results from Srim or Trim.

• Other from a possible interface with GEANT4

Electrons

Holes

I. Smirnov, Heed-C++: http://ismirnov.web.cern.ch/ismirnov/heed.

W W M Allison and J H Cobb Ann. Rev. Nucl. Part. Sci. 30: 253-95 (1980).

D. Pfeiffer et al, NIM A 935 (2019), 121.

http://ismirnov.web.cern.ch/ismirnov/heed


A typical approach for silicon is to simulate the drift lines of individual electrons and holes using a Monte Carlo technique

based on macroscopic transport parameters.

• Canali high-field mobility model (drift velocity silicon)

• Other models and materials other than silicon are also available

• (Synopsys Sentaurus) TCAD transport data can be imported
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Charge transport

Electrons

Holes

Importing TCAD field maps: https://garfieldpp.web.cern.ch/garfieldpp/examples/tcad/

https://garfieldpp.web.cern.ch/garfieldpp/examples/tcad/


The Ramo-Shockley theorem is used to induce signals on readout electrodes by charge movement. Weighting potentials are 

calculated using built-in analytical solutions or numerically via FEM solvers.
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Signal induction

Strip electrode

Signal 𝐼𝑖(𝑡) induced on strip electrodeWeighting potential ψ𝑖 𝒙 of strip electrode

Electrons

Holes

,

Garfield++ example: https://gitlab.cern.ch/garfield/garfieldpp/-

/tree/master/Examples/Silicon?ref_type=heads.

S. Ramo, PROC. IRE 27, 584 (1939).

W. Shockley, Journal of Applied Physics. 9 (10): 635 (1938).

https://gitlab.cern.ch/garfield/garfieldpp/-/tree/master/Examples/Silicon?ref_type=heads


The Ramo-Shockley theorem is used to induce signals on readout electrodes by charge movement. Weighting potentials are 

calculated using built-in analytical solutions or numerically via FEM solvers.
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Signal induction

Strip electrode

Signal 𝐼𝑖(𝑡) induced on strip electrode

Electrons

Holes

,

Garfield++ example: https://gitlab.cern.ch/garfield/garfieldpp/-

/tree/master/Examples/Silicon?ref_type=heads.

S. Ramo, PROC. IRE 27, 584 (1939).

W. Shockley, Journal of Applied Physics. 9 (10): 635 (1938).

Noisy signal after front-end

https://gitlab.cern.ch/garfield/garfieldpp/-/tree/master/Examples/Silicon?ref_type=heads
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Charge amplification (LGAD)

To simulate the development of an avalanche in high-field regions inside the sensor, such as a highly doped p+-type layer in 

an LGAD, one can:

• Use the Van Overstraeten - de Man model (for impact ionisation coefficient silicon)

• import a map of transport data from TCAD

180 GeV/c pion event

Gain layerElectrons

Holes

F. Carnesecchi et al.

MC simulation

Analytical solution

|E| = 300 kV/cm

R. J. McIntyre, IEEE Transactions on Electron Devices ED-13 (1) (1966) 164-168.
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Charge amplification (LGAD)

180 GeV/c pion event

Gain layerElectrons

Holes

F. Carnesecchi et al.
Induced signal on pad

To simulate the development of an avalanche in high-field regions inside the sensor, such as a highly doped p+-type layer in 

an LGAD, one can:

• Use the Van Overstraeten - de Man model (for impact ionisation coefficient silicon)

• import a map of transport data from TCAD



For SPADs Garfield++ can accurately capture the initial growth of the avalanche. However, there are two key mechanism to 

describe the later-time dynamics:

• Field reduction: Due to bias voltage drop from the quenching resistor. Work in progress!

• Space-Charge effects: Due to electrons and holes causing time-dependent field modifications. Ongoing efforts in DRD1 

WG4 for MPGDs and (M)RPCs.
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Charge amplification (SPAD)

Simulated avalanche without quenching Simulated avalanche with quenching

DRD1 WG4 topical meeting on large avalanches: https://indi.to/9TWnL

Electrons

Holes

Electrons

Holes

https://indi.to/9TWnL


In detectors with resistive elements, signal timing depends on both charge movement in the drift medium and the time-

dependent reaction of resistive materials.

Ramo-Shockley theorem extension for conducting media
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E. Gatti et al., Nucl. Instrum. Meth. in Physics Research 193 (1982) 651.

W. Riegler, Nucl. Instrum. Meth. A 535 (2004), 287-293.

W. Riegler, Nucl. Instrum. Meth. A 940 (2019) 453-461.

The dynamic weigting potential ψi(𝐱, t) can be calculated: 

1. Remove the all the drifting charges.

2. Apply the biasing voltage Vb to obtain ψb 𝐱 .

3. Apply an additional voltage pulls VwΘ(𝑡) to the electrode at time t = 0, where 

Vw ≪ Vb. The resulting potential is given by ψ(𝐱, t) = ψi(𝐱, t) + ψb 𝐱 .

4. Obtaining the weighting potential is thus: ψi(𝐱, t) = ψ 𝐱, t − ψb 𝐱 .
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𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝

𝑅 𝑙𝑎𝑦𝑒𝑟

𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝑐𝑎𝑡ℎ𝑜𝑑𝑒

V

𝑚𝑒𝑑𝑖𝑢𝑚 𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

V

D. Janssens, Ph.D. thesis (2024), https://cds.cern.ch/record/2890572.

Garfield++ TCAD example: https://gitlab.cern.ch/garfield/garfieldpp/-

/tree/master/Examples/TcadDelayed?ref_type=heads.

Ramo-Shockley theorem extension for conducting media

The time-dependent weighting potential captures signal dynamics from resistive elements. This can be obtained analytically for 

limited geometries; hence, a numerical approach was developed using FEM solvers:

• COMSOL: Implemented and verified against experimental data.

• TCAD: Implemented, but this still needs to be tested in more detail.

𝑚𝑒𝑑𝑖𝑢𝑚

https://cds.cern.ch/record/2890572
https://gitlab.cern.ch/garfield/garfieldpp/-/tree/master/Examples/TcadDelayed?ref_type=heads
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AC-LGAD or Resistive Silicon Detector

Using COMSOL, the weighting potential of cross-shaped electrodes in a Resistive Silicon Detector (RSD) was calculated. This 

is passed to Garfield++ for the Monte Carlo simulation. 

Preliminary simulated response

Slide borrowed form N. Cartiglia: ULITIMA 2023. 

1 2

3 4

Total signal

Electron 

contribution

https://indico.slac.stanford.edu/event/7076/contributions/4205/
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3D Diamond sensor

Thanks to the fruitful discussions with the TIMESPOT collaboration.

In contrast to its silicon counterpart, the 3D electrode structure is achieved by inducing a local phase transition in the diamond, 

resulting in graphitic pillar electrodes that have a finite conductivity.

V



Summary
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Garfield++ is an object-oriented toolkit designed for detailed simulations of particle detectors, using ionization measurements 

in gases and semiconductors.

• Primary interaction: Interfaces with Heed to generate initial coordinates for electron-hole pairs from charged particles 

crossing the sensor.

• Electric field setup: Electric fields can be set using built-in functions or imported from FEM solvers, such as TCAD.

• Drift and ionization simulation: Includes built-in models for simulating drift lines and impact ionization for electrons and 

holes. Alternatively, relevant parameters can be sourced from TCAD.

• Signal induction: For sensors with regions of finite conductivity (e.g., AC-LGADs), the time-dependent weighting potential 

can be used for an accurate description of the signal induction process.

Thank you for your attention!


