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Introduction

Garfield++ is an open-source Monte Carlo toolkit developed for detailed simulations of particle detectors, utilizing ionization
measurements in both gases and semiconductors.

It builds upon the foundation of the widely-used Fortran program Garfield (R. Veenhof), which has been extensively used for
simulating gas-based detectors.
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Drift lines from a Monolithic silicon sensors.

- J. Hasenbichler, PhD thesis (2021):
A https://doi.ora/10.34726/hss.2021.63185
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Introduction

The further development of Garfield++ is a community-
driven undertaking, with new contributions to the main
branch being reviewed by a small group of “maintainers”.

We will provide a brief overview of the simulation

capabilities of this toolkit by covering some key examples.

Outline:
* Primary ionization
* Charge transport
« Signal induction
» Charge amplification (LGAD and SPAD)
« Time-dependent weighting potentials

e Summary
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Garfield++ Installation Examples Documentation

Garfield++

About

Garfield++ is a toolkit for the detailed simulation of particle detectors based on ionisation measurement in gases and semiconductors. The main area of application is currently in micropattern gaseous
detectors. Garfield++ shares functionality with the Garfield proagram. The main differences are the more up-to-date treatment of electron transport, the possibility to simulate silicon sensors, and the user
interface, which is based on ROOT.

More...
Getting started
= Installation

= Examples
» Documentation (User Guide, Doxygen, FAQ)

Support
= If you have any questions, please send a mail to garfield-suppert@cern.ch (or contact Heinrich Schindler or Rob Veenhof directly).
= To receive (infrequent) announcements about updates of the code, please subscribe to the mailing list garfield-users@cexrn.ch on E-Groups.

= Issues can be reported on GitLab.

Related calculations

= Modelling of avalanches and streamers with COMSOL.

Garfield++ webpage: https://garfieldpp.web.cern.ch/garfieldpp/

@)

GitLab: https://qgitlab.cern.ch/garfield/garfieldpp
User guide: https://garfieldpp.web.cern.ch/documentation/UserGuide.pdf
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Primary ionization
The primary ionization pattern resulting from the energy transfer from the incident particle to the sensitive medium can be
simulated using Garfield++ for:

« Charged relativistic particle using the interface with Heed, based on
an extended version of the PAI model.
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I. Smirnov, Heed-C++: http://ismirnov.web.cern.ch/ismirnov/heed.
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Primary ionization

The primary ionization pattern resulting from the energy transfer from the incident particle to the sensitive medium can be

simulated using Garfield++ for:

« Charged relativistic particle using the interface with Heed, based on

an extended version of the PAI model.

« X-Ray photoabsorption using the interface with Heed.

* lon track using simulation imported results from Srim or Trim.

« Other from a possible interface with GEANT4
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I. Smirnov, Heed-C++: http://ismirnov.web.cern.ch/ismirnov/heed.
W W M Allison and J H Cobb Ann. Rev. Nucl. Part. Sci. 30: 253-95 (1980).
D. Pfeiffer et al, NIM A 935 (2019), 121.
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Charge transport

A typical approach for silicon is to simulate the drift lines of individual electrons and holes using a Monte Carlo technique
based on macroscopic transport parameters.

« Canali high-field mobility model (drift velocity silicon)
 Other models and materials other than silicon are also available

* (Synopsys Sentaurus) TCAD transport data can be imported
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Importing TCAD field maps: https://garfieldpp.web.cern.ch/garfieldpp/examples/tcad/
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Signal induction

The Ramo-Shockley theorem is used to induce signals on readout electrodes by charge movement. Weighting potentials are
calculated using built-in analytical solutions or numerically via FEM solvers.
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_ @ S. Ramo, PROC. IRE 27, 584 (1939). Garfield++ example: https://qitlab.cern.ch/garfield/qgarfieldpp/-

W. Shockley, Journal of Applied Physics. 9 (10): 635 (1938). [tree/master/Examples/Silicon?ref type=heads.
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Signal induction

The Ramo-Shockley theorem is used to induce signals on readout electrodes by charge movement. Weighting potentials are
calculated using built-in analytical solutions or numerically via FEM solvers.
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Charge amplification (LGAD)

To simulate the development of an avalanche in high-field regions inside the sensor, such as a highly doped p+-type layer in
an LGAD, one can:

+ Use the Van Overstraeten - de Man model (for impact ionisation coefficient silicon)

* import a map of transport data from TCAD

0.005 p==e s

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

180 GeV/c pion event

E_ j Gain Iayer_E

F Holes ‘ 3

| l |
20002 -0, 001 0 0. 001 0.002

x [cm]

signal [fC / ns]

~12 —
—145—

-18 |

. . Carnesecchi ef al

10> |E| =300 kV/cm

MC simulation

Analytical solution \

\

10

] i T T S L L RS SR I TR TR TR T

0 0.5 1 1.5

720': Ly

o~ III|IIIIIII|IIIIIII|III|III|III|III|III

d (um)

time [ns

R. J. Mcintyre, IEEE Transactions on Electron Devices ED-13 (1) (1966) 164-168.

8



Charge amplification (LGAD)

To simulate the development of an avalanche in high-field regions inside the sensor, such as a highly doped p+-type layer in
an LGAD, one can:

+ Use the Van Overstraeten - de Man model (for impact ionisation coefficient silicon)

* import a map of transport data from TCAD
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Charge amplification (SPAD)

For SPADs Garfield++ can accurately capture the initial growth of the avalanche. However, there are two key mechanism to
describe the later-time dynamics:

* Field reduction: Due to bias voltage drop from the quenching resistor. Work in progress!

« Space-Charge effects: Due to electrons and holes causing time-dependent field modifications. Ongoing efforts in DRD1
WG4 for MPGDs and (M)RPCs.
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DRD1 WG4 topical meeting on large avalanches: https://indi.to/9TWnL 10
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Ramo-Shockley theorem extension for conducting media

In detectors with resistive elements, signal timing depends on both charge movement in the drift medium and the time-
dependent reaction of resistive materials.

Ii(t) = _Vi,w /Ot H; [x, (') 6 = 1] - %4 (') dt’

H’i(xat) = -V ot

The dynamic weigting potential ,(x,t) can be calculated:

1. Remove the all the drifting charges.
2. Apply the biasing voltage V, to obtain 5, (x).

3. Apply an additional voltage pulls V,,0(t) to the electrode at time t = 0, where
V,, < V,. The resulting potential is given by Y(x,t) = §,(x,t) + P, (x).

4. Obtaining the weighting potential is thus: y,(x,t) = U(x,t) — P, (x).

E. Gatti et al., Nucl. Instrum. Meth. in Physics Research 193 (1982) 651.
W. Riegler, Nucl. Instrum. Meth. A 535 (2004), 287-293.
W. Riegler, Nucl. Instrum. Meth. A 940 (2019) 453-461.
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Ramo-Shockley theorem extension for conducting media

The time-dependent weighting potential captures signal dynamics from resistive elements. This can be obtained analytically for
limited geometries; hence, a numerical approach was developed using FEM solvers:

« COMSOL: Implemented and verified against experimental data.

« TCAD: Implemented, but this still needs to be tested in more detail.
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D. Janssens, Ph.D. thesis (2024), https://cds.cern.ch/record/2890572.
Garfield++ TCAD example: https://gitlab.cern.ch/garfield/garfieldpp/- 12
[tree/master/Examples/TcadDelayed?ref type=heads.
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AC-LGAD or Resistive Silicon Detector

Using COMSOL, the weighting potential of cross-shaped electrodes in a Resistive Silicon Detector (RSD) was calculated. This
Is passed to Garfield++ for the Monte Carlo simulation.

Preliminary simulated response

Induced signals form 120 GeV/c pion
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3D Diamond sensor

In contrast to its silicon counterpart, the 3D electrode structure is achieved by inducing a local phase transition in the diamond,
resulting in graphitic pillar electrodes that have a finite conductivity.
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‘@ Thanks to the fruitful discussions with the TIMESPOT collaboration. 14




Summary

Garfield++ is an object-oriented toolkit designed for detailed simulations of particle detectors, using ionization measurements
in gases and semiconductors.

* Primary interaction: Interfaces with Heed to generate initial coordinates for electron-hole pairs from charged particles
crossing the sensor,

» Electric field setup: Electric fields can be set using built-in functions or imported from FEM solvers, such as TCAD.

« Drift and ionization simulation: Includes built-in models for simulating drift lines and impact ionization for electrons and
holes. Alternatively, relevant parameters can be sourced from TCAD.

« Signal induction: For sensors with regions of finite conductivity (e.g., AC-LGADSs), the time-dependent weighting potential
can be used for an accurate description of the signal induction process.

Thank you for your attention!
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