

TCAD Models/Parameters and Tool Fusion

Jürgen Burin, Philipp Gaggl, Andreas Gsponer, Simon Waid and Thomas Bergauer *juergen.burin@oeaw.ac.at*

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences

1st DRD3 week on Solid State Detectors R&D, June 20th 2024

SCIENCES

Simulations @ HEPHY

TCAD

- 4H-SiC
- LGADs
- radiation damage
- GEANT4 integration

Allpix², GATE

- time of flight
- medical applications

SPICE

- readout electronics
- chip layout

SCIENCES

TCAD Frameworks

- Global TCAD solutions (GTS) [1]
 - spin-off of TU Wien
 - direct access to developers (in walking distance)
- Sentaurus Workbench [2]
 - access via Europractice

Li et al. (2024) doi:10.1016/i.fmre.2024.01.010

Silicon Carbide

- wide bandgap material (WBM)
 - one of first investigated semiconductors
 - used in power electronics
 - polytype 4H commonly used
- features high

AUSTRIAN

SCIENCES

- charge carrier mobilities
- breakdown field
- thermal conductance
- utilization @ HEPHY
 - low noise particle detector
 - medical and HEP applications

- 1. 4H-SiC TCAD Parameter Review
- 2. Radiation Damage Simulations in 4H-SiC
- 3. GEANT4 Integration in GTS
- 4. Conclusion

4H-SiC TCAD Parameter Review

Really? Use a chat bot ... ;)

ALISTRIAN

SCIENCES

4H-SiC TCAD Parameter Review

- state-of-the-art
 - lots of models and parameters available
 - origin/trustworthiness not clear
- methods
 - present published models/parameters
 - check consistency with references
 - identify key publications and values
 - distinguish hexagonal/cubic lattice sites and direction \perp / \parallel to c-axis
- goals
 - focus on bulk properties
 - provide entry point for newcomers
 - trigger critical evaluation in community

4H-SiC TCAD Parameter Review cont'd

Topics:

AUSTRIAN

SCIENCES

- relative permittivity
 - $\varepsilon^{\parallel}, \varepsilon^{\perp}, \varepsilon^{\parallel}_{\infty}, \varepsilon^{\perp}_{\infty}$
- (temperature dependent) bandgap
 - (exciton) bandgap energy
- mobility
 - low and high field, saturation velocity
- impact ionization
 - fitting and physics based models
- effective electron/hole masses
 - calculations and measurements

Jürgen Burin et al

- incomplete ionization
 - doping and temp. dependency
- generation/recombination
 - SRH, bimolecular and Auger
- possible additions
 - thermal conductivity, electron affinity

4H-SiC TCAD Parameter Review cont'd

relative permittivity $(arepsilon^{\parallel},arepsilon^{\perp}/arepsilon_{\infty}^{\parallel},arepsilon_{\infty}^{\perp})$

Preliminary Results:

AUSTRIAN

SCIENCES

- many investigations available
 - > 800 publications analysed
- mixing of polytypes
 - many 6H values used
 - not properly labeled
- long citation chains
 - values may date back several decades

Jürgen Burin et al

active field of research

Patrick et al.

4H-SiC Radiation Damage

Aah, all that luminosity ...

Measurements

- 4H-SiC planar diodes
 - run 13575 IMB-CNM-CSIC [3]
- neutron irradiation at ATI Vienna [4]
 - 1 MeV equivalent neutron fluences

- published by Gsponer et al. [5]
 - negligible conductance for forward bias
 - capacitance constant with varying bias voltage

TCAD Radiation Damage Model

- trap information deviate in literature
 - energy level and type

AUSTRIAN

SCIENCES

- capture cross sections $\sigma_{e,h}$
- introduction rate gint

- model by Gaggl et al. [6]
 - details in talk by Philipp Gaggl
 - actual trap levels utilized
 - subset used in this work

Defect	Туре		Energy	/	8 int	$\sigma_{\!e}$	σ_h
					$[cm^{-1}]$	[cm ²]	[cm ²]
Z _{1,2}	Accepto	r E _C	-0.67	eVa	5.0 ^b	2e-14 ^a	3.5e-14 ^a
EH _{6,7}	Donor ^c	E_{c}	-1.66	əV ^{d,e}	1.6 ^b	9e−12 ^e	3.8e-14 ^{d,e}
EH_4	Accepto	r <i>E_C</i>	-1.03	eV ^{f,g}	2.4 ^b	5e-13 ^g	5.0e-14 ^g
a[7] ^b [8] ° [9]	^d [10]	e[11]	f [12]	^g [13]		

Simulations in GTS

- convergence hard to achieve
 - necessary to deactivate some modelling
- qualitative match with measurements

- explanation for low forward current
 - trapped charge carriers form space charge
- simulations need to be improved

Simulations in GTS

- convergence hard to achieve
 - necessary to deactivate some modelling
- qualitative match with measurements

- explanation for low forward current
 - trapped charge carriers form space charge
- simulations need to be improved

SCIENCES

Simulations in GTS

- convergence hard to achieve
 - necessary to deactivate some modelling
- qualitative match with measurements

- explanation for low forward current
 - trapped charge carriers form space charge
- simulations need to be improved

GEANT4 Integration in GTS

Combine those tools!

GEANT4 in GTS

• utilize particle traces for realistic charge deposition

workflow

AUSTRIAN

- 1. create structure in GTS framework
- 2. define GEANT4 commands in .mac file
- 3. run precompiled GEANT4 binary
- 4. load structure in GTS and run simulations

goals

- get it going
- add statistics to simulations
- retrace measurement effects, e.g., gain supression and energy distribution

Conclusion

- simulations utilized at various occasions @ HEPHY
- TCAD parameter review of 4H-SiC
 - overview and critical evaluation
 - ongoing research
- simulation of radiation damage in 4H-SiC
 - first steps towards a TCAD model
 - project "TCAD Radiation Model for 4H-SiC" proposed in WG3
- integration of GEANT4 in GTS
 - tight interleaving of tools

UISTRIAN

Conclusion

- simulations utilized at various occasions @ HEPHY
- TCAD parameter review of 4H-SiC
 - overview and critical evaluation
 - ongoing research
- simulation of radiation damage in 4H-SiC
 - first steps towards a TCAD model
 - project "TCAD Radiation Model for 4H-SiC" proposed in WG3
- integration of GEANT4 in GTS
 - tight interleaving of tools

Thank you for your attention.

References

- [1] GTS Framework. URL: https://www.globaltcad.com/products/gts-framework/.
- [2] Synopsys Sentaurus TCAD Framework. URL: https://www.synopsys.com/manufacturing/tcad/framework.html.
- Joan Marc Rafi et al. "Electron, Neutron, and Proton Irradiation Effects on SiC Radiation Detectors". In: IEEE Transactions on Nuclear Science 67.12 (2020). DOI: 10.1109/TNS.2020.3029730.
- [4] Peter Salajka. Irradiation of silicon detectors for HEP experiments in the Triga Mark II reactor of ATI. 2021. DOI: 10.34726/hss.2021.92420.
- [5] Andreas Gsponer et al. "Neutron radiation induced effects in 4H-SiC PiN diodes". In: Journal of Instrumentation 18.11 (Nov. 2023). DOI: 10.1088/1748-0221/18/11/C11027.
- [6] Philipp Gaggl et al. "TCAD modeling of radiation induced defects in 4H-SiC diodes and LGADs". Poster at the 16th Pisa Meeting on Advanced Detectors. 2024.
- [7] P. B. Klein. "Identification and Carrier Dynamics of the Dominant Lifetime Limiting Defect in n⁻ 4H-SiC Epitaxial Layers: Dominant Lifetime Limiting Defect in n⁻ 4H-SiC Epitaxial Layers". In: *physica status solidi (a)* 206.10 (Oct. 2009). ISSN: 18626300. DOI: 10.1002/pssa.200925155.
- [8] Pavel Hazdra, Vít Záhlava, and Jan Vobecký. "Point Defects in 4H–SiC Epilayers Introduced by Neutron Irradiation". In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 327 (May 2014). ISSN: 0168583X. DOI: 10.1016/j.nimb.2013.09.051.
- [9] Tamas Hornos, Adam Gali, and Bengt Gunnar Svensson. "Large-Scale Electronic Structure Calculations of Vacancies in 4H-SiC Using the Heyd-Scuseria-Ernzerhof Screened Hybrid Density Functional". In: *Materials Science Forum* 679–680 (Mar. 2011). ISSN: 1662-9752. DOI: 10.4028/www.scientific.net/MSF.679-680.261.

References cont'd

- [10] M. L. Megherbi et al. "Analysis of the Forward I–V Characteristics of Al-Implanted 4H-SiC p-i-n Diodes with Modeling of Recombination and Trapping Effects Due to Intrinsic and Doping-Induced Defect States". In: *Journal of Electronic Materials* 47.2 (Feb. 2018). ISSN: 0361-5235, 1543-186X. DOI: 10.1007/s11664-017-5916-8.
- [11] J. Zhang et al. "Electrically Active Defects in n -Type 4H–Silicon Carbide Grown in a Vertical Hot-Wall Reactor". In: Journal of Applied Physics 93.8 (Apr. 15, 2003). ISSN: 0021-8979, 1089-7550. DOI: 10.1063/1.1543240.
- [12] C. Hemmingsson et al. "Deep Level Defects in Electron-Irradiated 4H SiC Epitaxial Layers". In: Journal of Applied Physics 81.9 (May 1, 1997). ISSN: 0021-8979, 1089-7550. DOI: 10.1063/1.364397.
- [13] G. Alfieri et al. "Annealing Behavior between Room Temperature and 2000 ℃ of Deep Level Defects in Electron-Irradiated n-Type 4H Silicon Carbide". In: *Journal of Applied Physics* 98.4 (Aug. 15, 2005). ISSN: 0021-8979, 1089-7550. DOI: 10.1063/1.2009816.

AUSTRIAN