SiC AC-LGAD Timing Pixel Detector

Xin Shi and Xiyuan Zhang

On behalf of Proposing Institutions

20 June 2024

1st DRD3 week on Solid State Detectors R&D

Motivation and Goals

- Future vertex detector with high spatial and timing resolution under extreme fluences
- Strategic goals directly addressed in project as specified in DRDT 3.2
 - Target WP3
 - Task 2.2, 3.1
 - Milestone 3.5

WP	Task	MS or D	Description	2024	2025	2026	2027- 2029	> 2030
3	2.2, 3.1	MS3.5	SiC-LGAD (gain layer) proof of principle, simulation and first fabrication of devices with small areas (< 1 cm ² in 2026) and in large areas (5 cm ² after 2030).			x		x

Research Backgroud

Development of 4H-SiC LGAD - SICAR

Epitaxy and processing technology

- N type & P type Ohmic contact
- Bevel etched termination

Doping concentration design and SIMS measurament

Timing resolusion simulation of SICAR1

https://doi.org/10.1007/s41605-023-00431-y

- Simulation of 4H-SiC LGAD has time resolution of 35ps
- Better than 4H-SiC PIN devices (94 ps)
 - RASER * https://pypi.org/project/raser/

SICAR1- IV & CV properties

Design requirement of LGAD : $V_{GL} < V_{FD} < V_{BD}$

Operating voltage: VFD ~ VBD

- VGL~ 75V
- Vfd ~ 350V

- Leakage current can reach ~nA
- Breakdown voltage > 400V

SICAR1- charge collection with α particle

- Charge collection reached 150 fC @150V
- Saturation reached around 150 V

https://arxiv.org/abs/2405.18112

Proposal of SiC AC-LGAD Timing Detector

Challenges of SiC for high spatial resoluiton

- Goal: Improve the spatial resolution while maitaining good timing resolusion
- Challenges
 - Terminal etching is more difficult for SiC material
 - The reduction in pixel size exacerbates the difficulty of etching
 - The position resolution limit of the DC-coupling detector is more than 10um

Advantages of AC-coupled LGAD

- Can achieve same level of spatial resolution with larger pixel size
- Only need lower doping concentration without ohmic contact
- Only required etching of a protective ring structure around the whole pixel array
- Fill factor ~ 100%
- Can reach better spatial resolution
- Potential higher radiation hardness with SiC

Structure of AC-LGAD SiC

JTE injection depth is difficult to reach more than 700nm

JTE junction: The depth is not enough

Etching termination: No DC-electrodes

Proposed structure of 4H-SiC AC-LGAD

Termination: Etching combined with JTE

- Reduce leakage current
- Avoid premature breakdown
- Improve carrier collection efficiency

12

Signal response simulation of 4H-SiC AC-LGAD

- Simulate the signal response of 4H-SiC under LASER using WF2
 - (4-600nm)/Alpha(5MeV)
- Parameter:
 - full depletion: 150V
 - operating voltage: 200V

• Preliminary result indicates positive AC-LGAD behavior for 4H-SiC

Preliminary Milestones

- Device design and fabrication
 - Gain layer and JTE optimizaion
 - Resistive layer and Capcitive layer optimizaion
 - Simulation study
- Device characterization
 - IV, CV, TCT, alpha, MIPs
- Spacial and Temperoal resolusion
- Proton/Neutron irradiation
- Beam Test with ASICs

More detailed milestones and deliverables with be discussed within WG6 in the next few months

Participants and preliminary activities

- Already interested institutions with topics of interest
 - IHEP: Device design and fabrication
 - Jilin University / Shandong IAT: Software development
 - Dalian University of Technology: Device characterization
 - Ludong University: Device characterization
 - IMECAS: Device characterization
 - JSI: Neutron irradiation
 - Oxford: Device characterization
 - CERN: NIEL studies
 - Nikhef: Beam telescope studies

• Not covered activities

- AC-coupled readout board for SiC-LGAD
- Proton irradiation
- Defect characterization

See talk in the afternoon:

Development of Simulation Software - RASER

Collaborative work

- WG2, 3, 5: characterization of irradiated and non-irradiated devices
- WG4: modelling of radiation damage
- WG8: dissemination and outreach
- Potential synergies with similar projects
 - RD50: SiC-LGAD, SiC-LGAD-TPIX
 - TCAD Radiation Damage Model for 4H-SiC
 - Defect characterization on 4H-SiC sensors
- Converge on a WP3 subproject with 4D-tracking

Contact Person: Xin.Shi@cern.ch