

Hydrogenated Amorphous Silicon Pixel Detectors to Precisely Measure Ionizing Radiation

L. Servoli on behalf of HASPIDE Collaboration

1st DRD3 week - 17/21 june 2024

Main Goals

Creation of thin a-Si:H (1 - 10 μ m) ionizing radiation detectors deposited over thin plastic supports to be used for:

- → beam monitoring of medical LINACs and other types of accelerators
- → detection of radiation bursts in space, for example Solar Energetic Particles events;
- → neutron detection via ¹⁰B deposition over an a-Si:H layer to detect α produced by neutron conversion.

L. Servoli

Outline

- \rightarrow Why a-Si:H
- \rightarrow Device production
- \rightarrow Characterization results
- → Future Developments

Why a-Si:H as material?

- \rightarrow it is intrinsically radiation resistant;
- → it has a charge collection efficiency
 ~ half the c-Si;
- → it can be deposited in thin layers (~ 1-100 μ m);
- → it can be deposited with any pattern on the substrate (lithography)

- → it can be deposited on different substrates, even flexible ones like mylar and kapton;
- \rightarrow it is possible a low weight device with a wide area.

How to fabricate a device?

- → Mature protocol for industrial production for different applications like solar cells, flat panels for X-ray imaging...
- \rightarrow Thin film deposition with several techniques:
 - \rightarrow PECVD (Plasma Enhanced CVD) at moderate temperature (below 300°C) is the most used
 - → PLD (Pulsed Laser Deposition) coupled with reactive sputtering at lower temperatures. (HASPIDE R&D)
- → Wide area deposition is possible at lower costs than for crystalline silicon deposition.

1st DRD3 week - 17/21 june 2024

Which contact technique to use?

70 um kapton

P-i-n devices: p-doped and n-doped, plus a metal contact on both sides to allow polarization and signal extraction.

Wire bond Al

- Intrinsic a-Si:H detector layer 10-20 um
- p-doped a-Si:H junction layer
- Metal layer (Cr + Al)
 - n-doped a-Si:H junction
 - detector pad or bias Pad in Copper

Which contact technique to use?

Charge Selective Contacts: thin layers (< 100 nm) with asymmetric charge carriers mobility to create a gradient inside the device.

- \rightarrow electron selective contacts: ZnO:Al or TiO_2
- \rightarrow hole selective contacts: MoOx

1st DRD3 week - 17/21 june 2024

First prototypes

The first batch of a-Si:H depositions on polymmide has been produced (PECVD). Extensively tested.

 $2x2 \text{ mm}^2$ and $5x5 \text{ mm}^2$ devices (p-i-n) Thickness: 2.5 μ m.

Polymmide thickness: 25 μ m

New batches (under test): CSC + different geometries

Photoelectron spectroscopy can be used to obtain directly the energy position of gap states.

We have used monochromatic X-ray from ELECTRA Synchrotron Circular Polarization (CiPo) and BACH beamlines.

X-rays are capable of ionizing core electrons, while UV photons are not.

First measurement of band gap (preliminary)

L. Servoli

1st DRD3 week - 17/21 june 2024

L. Servoli

Some results: X-ray.

Sensitivity for different devices and bias.

Current vs incident dose-rate (X-ray source) for 2x2 mm device at various bias. Noise ~ few pA.

Device Area (mm ²)	Bias Voltage	Dosimetric sensitivity (nC/cGy)	Regression coefficient R
5 x 5	0V	0.367	0.99999
	2V	1.283	0.99991
	4V	1.900	0.99975
	6V	2.505	0.99972
	8V	3.027	0.99926
2 x 2	1V	0.137	0.99878
	4V	0.335	0.99961
	8V	0.540	0.99881

L. Servoli

1st DRD3 week - 17/21 june 2024

Very good results, comparable with reference dosimetry

L. Servoli

Synchrotron photon beams

Spatial reconstruction of microbeams (50 μ m width)

1st DRD3 week - 17/21 june 2024

Device radiation resistance

Neutron irradiation at Ljubliana facility p-i-n device

Leakage current recover after 12 h annealing @ 100°C

Future developments

- 1) Beam monitoring:
- → response to electron, proton and ion beams (ongoing)
- → single ion detection (using chip developed for PANDA readout)
- \rightarrow very high dose-rate (like FLASH therapy) tens kGy/pulse

Future developments

→ studying the possibility of 3D electrodes for thicker a-SI:H devices.

 \rightarrow study device performance with different contact techniques.

L. Servoli

Future developments

- 3) Miscellanea:
- \rightarrow test of a readout chip (current mode) in 28 nm technology
- → study response of devices deposited on bendable (and bent) substrates like kapton.
- → realization of pixellated transmission device to measure at the same time spatial distribution and flux (dose-rate)

Thanks.

L. Servoli

1st DRD3 week - 17/21 june 2024