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Main Goals

mw Creation of thin a-Si:H (1- 10 um) ionizing radiation &=
’ detectors deposited over thin plastic supports to be used for:

— beam monitoring of medical LINACs and other types of
accelerators

— detection of radiation bursts in space, for example Solar
Energetic Particles events:

- via 1°B deposition over an a-Si:H layer
to detect a produced by neutron conversion.
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Why a-Si:H as material?

it is intrinsically radiation resistant;
it has a charge collection efficiency
~ half the c-Si:

it can be deposited in thin layers

(~ 1-100 um);

it can be deposited with any pattern
on the substrate (lithography)

— it can be deposited on different substrates, even flexible
ones like mylar and kapton.

it is possible a low weight device with a wide area.
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How to fabricate a device?

? . Mature protocol for industrial production for different

applications like solar cells, flat panels for X-ray imaging. ..

— Thin film deposition with several techniques:
— PECVD (Plasma Enhanced CVD) at moderate temperature
(below 300°C) is the most used

— PLD (Pulsed Laser Deposition) coupled with reactive
sputtering at lower temperatures. (HASPIDE R&D)

— Wide area deposition is possible at lower costs than for
crystalline silicon deposition.
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"W} Which contact technique to use?

P-i-n devices: p-doped and n-doped, plus a metal contact™= j

on both sides to allow polarization and signal extraction.
'ire bond Al Intrinsic a-Si:H detector layer 70 um kapton
10-20 um -

p-doped a-Si:H junction layer

=== Metal layer (Cr+Al) —

n-doped a-Si:H junction

detector pad or bias
Pad in Copper
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"W} Which contact technique to use?

Charge Selective Contacts: thin layers (< 100 nm) with asymmetric
charge carriers mobility to create a gradient inside the device.

TCO contact
Holes selective contacts

Thick a-5i:H active layer

Electron selective contact

Substrate (glass or c-5i)

— electron selective contacts: ZnO:Al or TiO:
— hole selective contacts: MoOx
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been produced (PEC VD)
Extensively tested.

2x2 mm? and 5x5 mm? devices (p-i-n)
Thickness: 2.5 um.

Polymmide thickness: 25 um

New batches (under test): CSC + different geometries
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Valence band

K-ra}%‘\

Core levels

@® X-rays are capable of ionizing core

to obtain directly the energy position of

: \%\ .--. gap states.
uv
We have used monochromatic X-ray from

@®® ELECTRA Synchrotron Circular Polarization

(CiPo) and BACH beamlines.

electrons, while UV photons are not.

1st DRD3 week - 17/21 june 2024




Test on device quality: p-i-n

ﬁ?éaau,lé;é ’
We are capable of identifying several type of bonds.
R&D is going on to correlate it with device sensitivity
Reference a-Si:H
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First measurement of band gap (preliminary)
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a-Si:H TCAD simulation

We have developed a a-Si:H material description to be
inserted in SYNOPSYS TCAD. / — —
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We could now reproduce
time-varying evolution of
photon beam signal.
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Charge Collection area:

XBIC mapping of the charge collected by a single pixel -10 V bias
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+C Some results: X-ray.

—a— Photocurrent (8V)
-B— Photocurrent (4V)
— — Photocurrent (1V)

Current vs incident dose-rate
(X-ray source) for 2x2 mm
device at various bias.

Noise ~ few pA.

-
(&)}

Photocurrent (nA)

05 Device Area | Bias Voltage | Dosimetric Regression
(mm?) sensitivity | coefficient R
(nC/cGy)

5x5 oV 0.367 0.99999
0 2V 1.283 0.99991
A O 4V 1.900 0.99975
Incident dose rate (cGy/s) 6V 2505 0.99972
eg o o . 8V 3.027 0.99926
SenSlthlty for different 2x2 v 0.137 099878
o . 4V 0.335 0.99961
devices and bias. 8V 0.540 0.99881
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Clinical MV photon beams
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Synchrotron photon beams

Spatial reconstruction of microbeams (50 um width)
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Very good results, comparable with reference dosimetry
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Device radiation resistance
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S Future developments

~e=- 1) Beam monitoring:
— response to electron, proton and ion beams (ongoing)

— single ion detection (using chip developed for PANDA
readout)

— very high dose-rate (like FLASH therapy) tens kGy/pulse
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"‘{:’ Future developments

~=-2) Device fabrication:

— creating matrix of diodes to monitor in transission beam
exit from accelerators

— studying the possibility of 3D electrodes for thicker
a-SI:H devices.

— study device performance with different contact techniques
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o
AN Future developments

~== 3) Miscellanea:
— test of a readout chip (current mode) in 28 nm technology

— study response of devices deposited on bendable (and
bent) substrates like kapton.

— realization of pixellated transmission device to measure
at the same time spatial distribution and flux (dose-rate)

1st DRD3 week - 17/21 june 2024



Thanks.
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