

WG7 session - discussion on interconnects

G. Calderini (LPNHE Paris), D. Dannheim (CERN), F. Huegging (Bonn)

Expressions of Interest

Group	Contact	Ongoing work / topics of interest	Maskless	classical processes	2.5D integr. / modules	3D integration	FTE
ANL	Jessica Metcalfe	technologies for large-scale tracking devices					
Bonn University*	Fabian Hügging, Jochen Dingfelder	fine-pitch (<50 um) bonding; W2W bonding; in-house hybridisation	\checkmark			\checkmark	1 Staff + 1 Stud./Postdoc/Techn.
CERN*	Dominik Dannheim	In-house plating and hybridisation; compact module studies (including silicon photonics integration)	\checkmark		\checkmark		2.5 Res. + 2 Stud.
FBK	Giovanni Paternoster	3d-integration and interconnection of BSI-SiPMs for NUV/VUV; mask and mask-less UBM; W2W temporary bonding; chip-level solder-ball bonding >50 um; wafer-level micro bumps/pillars <50 um; in-house maskless interconnects	\checkmark		\checkmark		1 Staff
Fraunhofer IZM*	Thomas Fritzsch	hybridisation with <=25 um pitch; W2W bonding; wafer-level packaging; single-chip bump bonding for R&D		\checkmark		\checkmark	1 Staff
Geneva University*	Mateus Vicente	In-house flip-chip bonding: gold studs, ACP/ACF, Cu pillars; chip-to-flex	\checkmark		\checkmark		
IMB-CNM-CSIC	Miguel Ullán	RDL, TSV, interposers		\checkmark	\checkmark		0.5 Res.
INFN Bari	Giovanni Francesco Ciani	interconnection between bent sensors; stacking of several CMOS sensors for full 3d tracking			\checkmark		0.5 Res. + 0.5 Stud.
INFN Cagliari	Adriano Lai	in-house single-die hybridisation with innovative bonding techniques such as ACF/ACP	\checkmark				
INFN Firenze	Giacomo Sguazzoni, Giovanni Passaleva	Novel interconnection techniques for future applications	\checkmark		\checkmark		0.5 Res. + 0.5 Stud.
INFN Milano	Gianluca Alimonti	Indium bump bonding; in-house die-to-die and die-to-PCB bonding; hybridisation of RSD; multi-chip systems on PCB/bus tape	\checkmark		\checkmark		
INFN Trieste	Giacomo Contin	interconnects for bent and ultrathin chips (ALICE ITS3); aerosol jet printing for RDL and contactless interconnects; TSV and wafer-to-wafer for 3D stacking					3 Res. + 1 Stud.
IPHC Strasbourg	Maciej Kachel	3D integration; small pitch (<10 um) interconnection		\checkmark		\checkmark	0.1 Staff
IP2I Lyon	Didier Contardo	wafer-to-wafer interconnect demonstrator				\checkmark	0.6 Physicist + 2.8 Tec
KIT Karlsruhe	Michele Caselle	in-house flip chip, gold studs, TSV processing, RDL	\checkmark		\checkmark		0.5 Staff + 1 Stud.
LPNHE Paris	Giovanni Calderini	interconnects: ACF, ACP, gold studs; characterisation techniques and devices; reliability testing; new interconnection techniques / scalability	\checkmark				1.5 Res. + 1 Stud. + 1 Techn.
MPG Halbleiterlabor*	Ladislav Andricek, Jelena Ninkovic	direct wafer bonding; 3D/2.5D systems with micro-channel cooling; W2W/C2W bonding		\checkmark	\checkmark	\checkmark	1 Staff + 2 Stud./Postdoc/Techn.
NIKHEF	Martin Fransen	high-frequency ASIC to module integration (RDL, TSV), wire bonding			\checkmark		0.2 Staff
ORNL	Mathieu Benoit	in-house interconnect for hybridisation and module building: single-chip bumping, UBM, bonding; gold studs, ACP/ACF, Cu pillars; chip-to-flex, chip-to-interposer; interposer fabrication	\checkmark				1 Staff + 1 Stud./Postdoc/Techn.
*around procenting of							
groups presenting at	URDS workshop June 2024	1					~50 FIE In total

- Interested institutes: Bonn, CERN, FBK, Geneva U, Cagliari, Firenze, Milano, KIT, LPNHE, ORNL
- Examples of previous or ongoing projects and collaborative work:
 - In-house Ni/Au plating for single dies (CERN EP R&D; linked to several external projects)
 - TimeSpot hybridisation with conductive adhesives (Cagliari, Geneva U, CERN EP R&D)
 - Timepix3 hybridisation with conductive adhesives (Geneva U, CERN EP R&D, Medipix)
 - Solder-ball jetting, gold studs (Bonn, Geneva U, CERN EP R&D, with industries)
- Scope of a possible WP / research goals to be addressed:
 - *RG 7.1:* Yield consolidation for fast interconnection technologies
 - RG 7.2: Demonstration of in-house process for single dies and pixel interconnections for a range of pitches (down to < 30 μm)

- Interested institutes: Bonn, FBK, IZM, CNM, MPG-HLL, Milano, IPHC
- Examples of previous projects:
 - Support-wafer bump bonding for 25 µm pitch (IZM, CERN EP R&D)
- Scope of a possible WP / research goals to be addressed:
 - Bump-bonding techniques for small pitch
 - *RG 7.3: Development of post-processing for classical bumping interconnection*
- Several EoIs indicate interest, but currently no submitted/presented activities

DRD3

- Interested institutes: CERN, FBK, Geneva U, CNM, Bari, Firenze, Milano, KIT, MPG-HLL, NIKHEF, ORNL
- Examples of ongoing projects and collaborative work:
 - 100µPET (Geneva U, EPFL, HUG Geneva)
 - MALTA compact-module studies (CERN EP R&D, Geneva U)
 - ALICE ITS3 wafer-scale bent modules (Bari, Trieste, with other ALICE institutes)
 - Timepix4 TSV bonding with ACF/ACP (Geneva U, CERN Medipix)
 - All-silicon ladder for Belle2 VTX (Bonn, IZM, Valencia)
 - 4-side buttable sensor with micro-channel cooling, interposer (MPG-HLL)
- Scope of a possible WP / research goals to be addressed:
 - *RG 7.3: Development of post-processing for classical bumping interconnection*
 - Validation of demonstrator modules (test beam, radiation hardness)
 - Integration of silicon photonics chips

3D integration

- Interested institutes: Bonn, FBK, IZM, Trieste, IPHC, Lyon, MPG-HLL
- Examples of ongoing projects and collaborative work:
 - AIDAinnova wafer-to-wafer bonding with Timepix3 (Bonn, IZM)
- Scope of a possible WP / research goals to be addressed:
 - RG 7.4: Development of wafer-to-wafer approach in presently advanced interconnection
 - *RG 7.5: Development of VIAS in multi-tier sensor/front-end assemblies*
 - Activity directly addresses DRD-T3.4 develop full 3D-interconnection technologies for solid state devices in particle physics

Points for discussion

DRD3

- Received 18 EoIs for interconnect activities, ~30 FTE
 - 35 groups had expressed interest in initial questionnaire
 - No concrete WP project proposals submitted yet
 - no clear prospects for added benefits, such as dedicated new funding for WP projects
- Several institutes already pursue interconnect activities
 - 4 institutes presented ongoing activities today
 - Mostly linked to various ongoing / approved projects (also large overlap with AIDAinnova WP6)
 - Interconnects have typically *supporting* role for WG1/2 activities and/or other approved projects, rather than being focused *strategic* R&D
- Links to other WGs and DRDs:
 - WG7 provides interconnect technologies for hybrid (WG2) and monolithic (WG1) sensors
 - Typically comes at a later stage of R&D, when seizable demonstrator chips are available
 - WG7 focuses on applications, in-house processing, evaluation; DRD7 provides access to *industrial* wafer-level 3D integration
- Proposal on how to proceed:

ECFA

- Define a few *light-weight* WP projects in the coming weeks, based on ongoing / newly proposed developments
- Add more ambitious *strategic R&D* project(s) at a later stage, when funding and reviewing schemes become more clear?