1st DRD3 week on Solid State Detectors R&D 18th June 2024

First characterisation of Trench Isolated LGADs fabricated at Micron Semiconductor Ltd

Fasih Zareef ^a , Neil Moffat^b , Dima Maneuski^c, Richard Bates^c, Agnieszka Oblakowska-Mucha^a, Tomasz Szumlak^a, Mark R. J. Williams^d, Mark Bullough^e , Oscar Augusto de Aguiar Francisco^f, Marco Gersabeck^f , Peter Lomax^g

^a AGH University of Krakow, Poland.
^b Centro Nacional de Microelectrónica (CNM), Barcelona, Spain.
^c University of Glasgow, Scotland.
^d The University of Edinburgh, Scotland.
^e Micron Semiconductor Ltd., Lancing, England.
^f University of Manchester, England.
^g Scottish Microelectronics Centre, Edinburgh, Scotland.

- Motivation
- Segmentation Techniques
- Fabrication
 - TCAD simulations
 - Run
 - Electrical Measurements
- TCT Measurements
 - Gain
 - Pixel Isolation
 - Inter-pixel distance (IPD)
- Discussion
- Summary & Future Work

Motivation

- To develop a fast-timing silicon hybrid pixel detector (sub 100ps), within the working group PixeLGAD, a UK based effort to develop LGAD technology.
- We must understand the LGAD technology, build simulation models and develop a fabrication process in collaboration with Micron Semiconductor.
- Detector should be for HEP experiments with modest radiation levels which require fast timing and good spatial resolution (i.e. LHCb Velo II Upgrade).
- Detector applications include imaging "soft" or "tender" (< 5 keV) energy x-rays, with focus on the water window (~500 eV).
- The detectors will be applicable to and demonstrated on **synchrotron beamlines** and for **electron microscopy**.
- We do not target a given experiment but aim to push the small pixel LGAD technology and demonstrate this with start-of-the-art small pixel fast timing pixel chips.
- We want to create an imaging detector in collaboration with the **Timepix4** readout ASIC.

AGH Pixel Segmentation

Fig 1(a): Standard LGAD

Fig 1(b): Trench-isolated LGAD

Standard LGADs:

- Segmentation → Junction Termination Extension (JTE), p-stop, virtual Guard-Rings
- Large "no-gain region"
- IPD ~ 50 μm (<u>G. Paternoster et. al., 2021</u>)
- Low fill-factor

Trench-Isolated LGADs:

- Segmentation \rightarrow Trenches (SiO₂ filled)
- 1 µm wide, and a few microns deep
- "no-gain region" is significantly reduced
- Fill-factor is increased
- Enhanced spatial resolution

G. Paternoster, et. al., 2017

Simulations (I)

- Sentaurus TCAD model used to create two adjacent pixels.
- Trench used to isolate the pixels.
- Trenched etched in silicon No gap between trench and implantations

Simulations (II)

- Isolation determined by the resistance between the adjacent • pixels. Must be high resistance up to oxide charge saturation.
- Isolation compared to standard isolation methods. i.e. p-spray ٠ and p stop. 1e13

1014

1012

1010

Production of TI-LGADs

Run-3455 produced by Micron Semiconductor Ltd:

- Wafer production based on increasing gain layer doping
- Active thickness = 250µm
- Pad area = $1x1 \text{ mm}^2$
- Devices:
 - A: 1x1 LGADs with JTE
 - B: 1x1 LGADs with JTE + Trench
 - C: 1x1 PIN (no gain)
 - D: 1x1 LGADs with Trench
 - E: 1x2 Pixels, isolated with Trench
- Medipix Arrays:
 - 55 µm pitch
 - 110 µm pitch

Electrical Measurements (I)

- Capacitance-Voltage (CV):
 - Gain layer depletion voltage, V_{GL} = 25-30 V
 - Full depletion ~ 120V

Electrical Measurements (II)

- Capacitance-Voltage (CV):
 - Gain layer depletion voltage, V_{GL} = 25-30 V
 - Full depletion ~ 120V

- Current-Voltage (IV):
 - No sign of breakdown up to 1000V
 - Leakage current is in nA's

Devices are working!

Transient Current Technique (TCT)

Particulars TCT Setup:

- IR pulsed laser (1064 nm) \rightarrow 8-10 μ m spot
- Broadband amplifier \rightarrow 35 db
- Laser calibrated to minimum ionizing particles (MIPs)
- xy-stage with sub-µm precision

TCT: Gain Measurements

• Gain is calculated by:

$$Gain = \frac{Q_{LGAD}}{Q_{PIN}}$$

 Gain of the tested wafer (2nd lowest GL doping) is between 2-3.

Bias voltage [V]

200um Trench LGAD: Gain as a Function of Voltage for different devices

TCT: Pixel Isolation

- One pixel connected to the readout
- Other pixel is only connected to bias voltage

Schematics of measurement setup for pixel isolation

TCT: Pixel Isolation (II)

- One pixel connected to the readout
- Other pixel is only connected to bias voltage

Connected to readout

Schematics of measurement setup for pixel isolation

TCT: Pixel Isolation (III)

- Laser is shot on **pixel-2**, which is connected to readout.
- Signal is observed for all the devices.

TCT: Pixel Isolation (IV)

- Laser is shot on **pixel-1**, which is not connected to readout.
- No Signal is observed for any device.
- Pixels are **isolated**! Trenches are **working**!

TCT: Pixel Isolation (2D Maps)

One pixel connected to the readout •

Charge 2D Scan - 0-20ns

- Other pixel is only connected to bias voltage •
- 2-dimensional (x-y) scans also depicts isolation between the pixels

Pixel-2 Pixel-1

Charge 2D Scan - 0-20ns

Pixel-2 Connected to readout

TCT: Inter-Pixel Distance

- Measuring the "no-gain region" also referred to as inter-pixel q distance (IPD).
- 1-dimensional scans along the x-position, and plot charge vs position for both pixels.
- Distance between the two pixels where normalized charge reaches 50% of its value.

Fig: Schematics of IPD calculation

Fig: 1-dimensional scan in the x-direction

TCT: Inter-Pixel Distance (II)

- Measuring the "no-gain region" also referred to as inter-pixel q distance (IPD).
- 1-dimensional scans along the x-position, and plot charge vs position for both pixels.
- Distance between the two pixels where normalized charge reaches 50% of its value.
- Fit the s-curve on the charge obtained from each pixel, given

by:
$$f(x) = c_1 * [1 \pm \operatorname{erf}(\frac{x - c_2}{c_3})] + c_4$$

• IPD is given by:

$$IPD = x_{RP(Q=0.5)} - x_{LP(Q=0.5)}$$

TCT: Inter-Pixel Distance (III)

TCT: Inter-Pixel Distance (V)

Interpixel distance decreases as voltage increases, as expected

Discussion: Isolation

- There is still some charge collected from the pixel, when the laser is on adjacent pixel.
- Most probably due to the **cross-talk** between the pixels.
- Idea is to look inside the trenches

Discussion: SEM Images

• A couple of devices from a different part of the wafer were cleaved to investigate the trenches.

Discussion: SEM Images

Toast: to the Trench Isolated LGADs

Discussion: SEM Images

- Trenches are ~ 2μm wide and ~ 7μm deep.
- Trench filling with SiO₂ is not as expected
- SiO₂ is over-etched during the wafer processing leaving a part of trenches empty.
- Additionally, some metal debris is observed in the trenches which seems to be a reason for the crosstalk.

Discussion: Energy Dispersive X-Ray (EDX) Spectra

- Confirmation of some metal debris in the trenches which seems to be a reason for the cross-talk.
- Aluminium peak was observed at position 2 but not in position 1.

Discussion: Next Production

Current Device Model

(uniform n+ implant)

Gap = Distance between **trench** and **n-plus**

New Device Model

(gap between trench and n-plus is introduced)

- To avoid over-etching of SiO₂
- Smooth trench filling

Summary and Future Work

- Preliminary results from new run of Trench-Isolated LGADs with low-gain have been presented
 - We are delighted to say that the **pixels are isolated**, but a little cross-talk is observed.
- Inter-pixel distance calculations shows values significantly smaller than the standard LGAD segmentation
 - IPD < 7µm at voltages above 180V
 - Fill factor is nearly **97%**
- Some issues were observed with the filling of trenches
 - New run is in progress to avoid cross-talk \rightarrow better isolation
- Next step is to characterise wafers with higher gain.
- Medipix arrays will be sent for under bump metal (UBM) → flip chipping to Timepix3 & Timepix4
- Irradiation campaign to study the effects on pixel isolation and IPD.
- Next production on thin **epitaxial wafers (50 µm)** for higher fill factor and improved timing resolution.

Acknowledegments

- This research has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761.
- This research has received funding from the STFC Opportunities grant under agreement no. ST/T002751/1.
- This research has received funding from the Royal Society
- This research has received support from Polish National Science Center under the agreement no. NCN 2023/49/N/ST2/02314 and UMO-2018/31/B/ST2/03998.

