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Introduction

® | ow Gain Avalanche Diodes (LGADs) and AC-coupled Low Gain Avalanche Diodes (AC-LGAD:s):
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» AC-pad coupled to the resistive n+ layer via dielectric coupling

» Not segmented gain layer: 100% fill factor

® Good spatial resolution with a relaxed pitch

» O(30) ps timing performance and 4D extension with O(10) y#m spatial resolution in RSD variant

® Applications:
» Electron-lon Collider, LHCb Velo Upgrade, CMS tracker Phase-3 upgrade, FCC-ee.

» Time of Flight Applications

» Medical applications.
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Introduction

® High Energy Physics Applications in low to moderate radiation regimes: FCC-ee and LHC upgrades:
® High-Luminosity LHC:
» LHCDb Velo Upgrade, CMS tracker Phase-3 upgrade:
+ Extension of CMS timing capabilities in the forward region (currently ETL)
+ Higher rapidity coverage

+ Replace one or two disks, instrumenting them with (AC)LGADs
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® FCC-ee:

» Timing capabilities in the outermost silicon
» Enhance particle identification
» Reduce the systematic uncertainty on beam energy .
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Charge sharing

® |Increased charge-sharing is an intrinsic property of RSD/AC-LGAD:s.
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»  With ¢; the area of each pad i and for r;the distance between the :
true hit and the pad i, the signal seen by each pad: :
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» Woaveforms from all pads coupled — n X n problem.

® Noise threshold traditionally puts a limit on the amount of useful information in the sharing.

» How much more information can be recovered?
» Multiple correlated signals, matrix inversion for position determination:

+ Computationally challenging.

+ Off-diagonal noise leads to large fluctuations and biases.

® Use Machine Learning to regularise the process and extract maximal information.
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ML

® Use Machine Learning to regularise the process and extract maximal information.
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Independent of pad arrangement — optimal geometry maximizes position resolution.

Full waveform processing — harness shape correlations between leading and all pads.

Harness all the information from all the pads, including correlations — improvement of the position resolution.

® Preliminary studies using the full digitized amplitude instead of relative amplitude fractions

» On lasers indicate a potential resolution of ~ 10 ym from pixels with 500 ym x 500 ym

>

Cumulative Probability

Previous studies using relative amplitude fractions on less advanced networks:

4+ ~ 20 um on same sensor with laser and ~ 44 ym on MIPs

AC LGAD TCT Laser Position Prediction
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Amplitude Sharing with Amplitude Boundaries
Amplitude Sharing with Truth Boundaries
Amplitude Matrix using Truth Positions
Recurrent Neural Network (High)

Recurrent Neural Network (Low)
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AC-LGAD (4C) TCT Laser Prediction
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Challenges

® Callenges:

® |andau fluctuations:

= Use laser-assisted test beam (MIP) training.

= Parametrization as a function of deposited charge.

® Degradation in performance with radiation damage

® ASIC/readout electronics limitation:

= Parametrization as a function of given fluences.

= |mplement processing in off-detector electronics, FPGA

= Woave-form rasterization in training/evaluation: preliminary still 10-15 #m resolution on 500 zm x 500 ym pixels.

AC-LGAD (4C) TCT Laser Prediction

AC LGAD TCT Position RNN Prediction
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Deliverables

® Our goal:
» Combining the response from infra-red laser measurements and the responses from |7/ — ) Pl
test-beam operations as a function of the irradiation dose of the sensors to construct a T ||
P \>

laser-assisted ML map capable of weighting out the proportion of intrinsic noise.

® O|:Sensor Fabrication And Analog-Based ML Development

» Study BNL-fabricated sensors with varying gain layer doses from 2.8 1022 to 2.25 1012 2

» Study different how behaviors as a function of different pad patterns
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» Training based on both TCTs and test beams

i)

» Investigate noise mitigation techniques with attention mechanisms and/or adversarial training.

» Optimize geometry based on application.

» Study performance as a function of sensor irradiation

® O2:Digital Readout And Firmware Development

» Transition from proof-of-concept to FPGA implementation
» Study the amount of compression needed for maintaining targeted spatial precision
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Conclusion/Collaborations

® Optimizing the information contained in the charge collection of RSD will:

» Accelerate the goals of achieving improved spatial resolution with current production technologies.
» Drive future technologies toward optimized designs,
» Output of this effort in the context of RG 2.3 area.

® Participants:

» Brown University: sensor characterization, ML implementation, and readout development.
» Brookhaven National Laboratory: sensor fabrication and readout development.

» University of Zurich: FEE design, sensor, and hybrid characterization, test beam setup.

® Resources:

» Personpower: staggered approach for Ol and O2.
+ 2 to 4 FTE of personpower to reach its targets:

+ ~| FTE of project guidance: 0.4 from Brown University and 0.2 and 0.2 from UZH and Brookhaven National
Laboratory,

4+ | to 2 transient appointments
» Characterization facilities in UZH, Brown, and BNL and Sensor fabrication at BNL.

» Further resources (inc. personpower) are envisioned through future funding requests.
® Collaborations and coactions within the DRD3 Collaboration at CERN:

» Open to collaboration with facilities (WGS5).

» Benefit from shared resources and joining of new persons in the team.

» Coactions with TCAD simulations are used to emulate RSDs' response.

» Collaboration with further readout experts towards full testing in complete hybrids.
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Additional material.



Bonding scheme
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