

Advancing the Pixelated Resistive Silicon Readout and Charge Collection Techniques

<u>Gaetano Barone</u>^a, Gabriele Giacomini^b, Ulrich Heintz^a, Anna Macchiolo^c, Ben Kilminster^c, Daniel Li^a, Jingyu Luo^a, Matias Senger^c, Alessandro Tricoli^b ^aBrown University ^bBrookhaven National Laboratory ^cZurich University

Introduction

• Low Gain Avalanche Diodes (LGADs) and AC-coupled Low Gain Avalanche Diodes (AC-LGADs):

- AC-pad coupled to the resistive n+ layer via dielectric coupling
- Not segmented gain layer: 100% fill factor
- Good spatial resolution with a relaxed pitch
 - O(30) ps timing performance and 4D extension with O(10) μ m spatial resolution in RSD variant
- Applications:
 - Electron-Ion Collider, LHCb Velo Upgrade, CMS tracker Phase-3 upgrade, FCC-ee.
 - Time of Flight Applications
 - Medical applications.

Introduction

- High Energy Physics Applications in low to moderate radiation regimes: FCC-ee and LHC upgrades:
- High-Luminosity LHC:
 - LHCb Velo Upgrade, CMS tracker Phase-3 upgrade:
 - Extension of CMS timing capabilities in the forward region (currently ETL)
 - + Higher rapidity coverage
 - Replace one or two disks, instrumenting them with (AC)LGADs

- FCC-ee:
 - Timing capabilities in the outermost silicon
 - Enhance particle identification
 - Reduce the systematic uncertainty on beam energy .

Charge sharing

- Increased charge-sharing is an intrinsic property of RSD/AC-LGADs.
 - With α_i the area of each pad i and for r_i the distance between the true hit and the pad i, the signal seen by each pad:

$$S_i = \frac{\alpha_i / \ln r_i}{\sum_i^n \alpha_i / \ln r_i}$$

• Waveforms from all pads coupled $\rightarrow n \times n$ problem.

- Noise threshold traditionally puts a limit on the amount of useful *information* in the sharing.
 - How much more information can be recovered?
 - Multiple correlated signals, matrix inversion for position determination:
 - Computationally challenging.
 - Off-diagonal noise leads to large fluctuations and biases.
- Use Machine Learning to regularise the process and extract maximal information.

BROWN

G. Barone

 Φ

BROWN

- Use Machine Learning to regularise the process and extract maximal information.
 - Independent of pad arrangement \rightarrow optimal geometry maximizes position resolution.
 - Full waveform processing \rightarrow harness shape correlations between leading and all pads.
 - Harness all the information from all the pads, including correlations \rightarrow improvement of the position resolution.
- Preliminary studies using the full digitized amplitude instead of relative amplitude fractions
 - On lasers indicate a potential resolution of ~ 10 μm from pixels with 500 μm x 500 μm
 - Previous studies using relative amplitude fractions on less advanced networks:
 - + ~ 20 μm on same sensor with laser and ~ 44 μm on MIPs

Challenges

- Callenges:
- Landau fluctuations:
 - ➡ Use laser-assisted test beam (MIP) training.
 - Parametrization as a function of deposited charge.
- Degradation in performance with radiation damage
 - ➡ Parametrization as a function of given fluences.
- ASIC/readout electronics limitation:
 - Implement processing in off-detector electronics, FPGA
 - Wave-form rasterization in training/evaluation: preliminary still 10-15 μ m resolution on 500 μ m x 500 μ m pixels.

Deliverables

- Our goal:
 - Combining the response from infra-red laser measurements and the responses from test-beam operations as a function of the irradiation dose of the sensors to construct a laser-assisted ML map capable of weighting out the proportion of intrinsic noise.
- OI: Sensor Fabrication And Analog-Based ML Development
 - Study BNL-fabricated sensors with varying gain layer doses from 2.8 10¹² cm⁻² to 2.25 10¹² cm⁻²
 - Study different how behaviors as a function of different pad patterns

- Training based on both TCTs and test beams
- Investigate noise mitigation techniques with attention mechanisms and/or adversarial training.
- Optimize geometry based on application.
- Study performance as a function of sensor irradiation
- 02: Digital Readout And Firmware Development
 - Transition from proof-of-concept to FPGA implementation
 - Study the amount of compression needed for maintaining targeted spatial precision

Conclusion/Collaborations

- Optimizing the information contained in the charge collection of RSD will:
 - Accelerate the goals of achieving improved spatial resolution with current production technologies.
 - Drive future technologies toward optimized designs,
 - Output of this effort in the context of RG 2.3 area.
- Participants:
 - Brown University: sensor characterization, ML implementation, and readout development.
 - Brookhaven National Laboratory: sensor fabrication and readout development.
 - University of Zurich: FEE design, sensor, and hybrid characterization, test beam setup.
- Resources:
 - Personpower: staggered approach for OI and O2.
 - ✤ 2 to 4 FTE of personpower to reach its targets:
 - ~I FTE of project guidance: 0.4 from Brown University and 0.2 and 0.2 from UZH and Brookhaven National Laboratory,
 - I to 2 transient appointments
 - Characterization facilities in UZH, Brown, and BNL and Sensor fabrication at BNL.
 - Further resources (inc. personpower) are envisioned through future funding requests.
- Collaborations and coactions within the DRD3 Collaboration at CERN:
 - Open to collaboration with facilities (WG5).
 - Benefit from shared resources and joining of new persons in the team.
 - Coactions with TCAD simulations are used to emulate RSDs' response.
 - Collaboration with further readout experts towards full testing in complete hybrids.

Additional material.

