

US-Japan project proposal : Capacitive Coupled Low Gain Avalanche Diode (AC-LGAD) detectors.

Koji Nakamura (KEK) on behalf of US-Japan AC-LGAD collabration

DRD3 week WG2

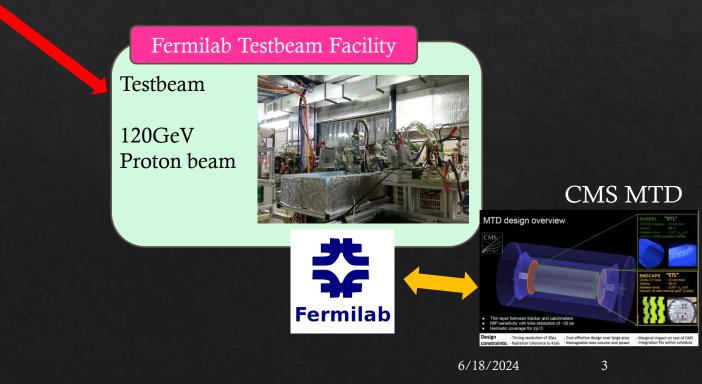
6/18/2024

History of US-Japan HEP program
 The U.S.-Japan Cooperation Program in High Energy Physics program :

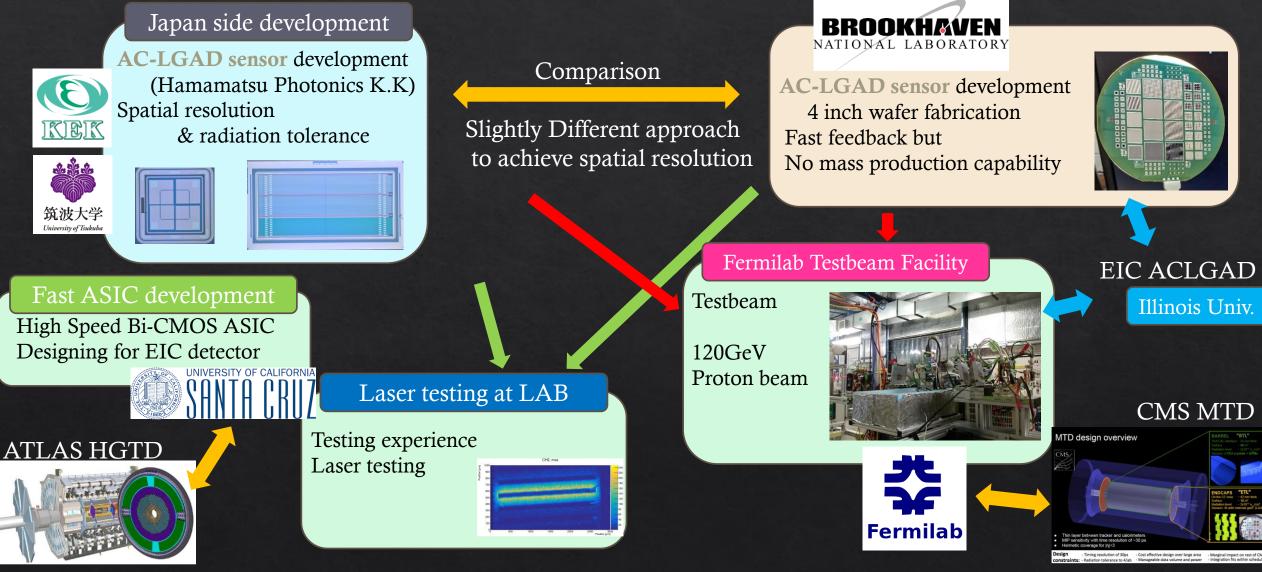
- ♦ 2018 US-Japan Special funds : formed US-Japan collaboration for fast timing detector
- - * 2019 Granted first US-Japan Cooperation Program (one year)
 - * 2020 Granted continuous US-Japan Cooperation Program (one year)
 - * 2021-2023 Granted another continuous US-Japan Cooperation Program (three years)
 - * 2024- Partially granted extension of US-Japan Cooperation Program (One year approved.)
- - ♦ Started between KEK/Tsukuba -- Fermilab
 - ♦ Extended to BNL and UCSC starting 2020

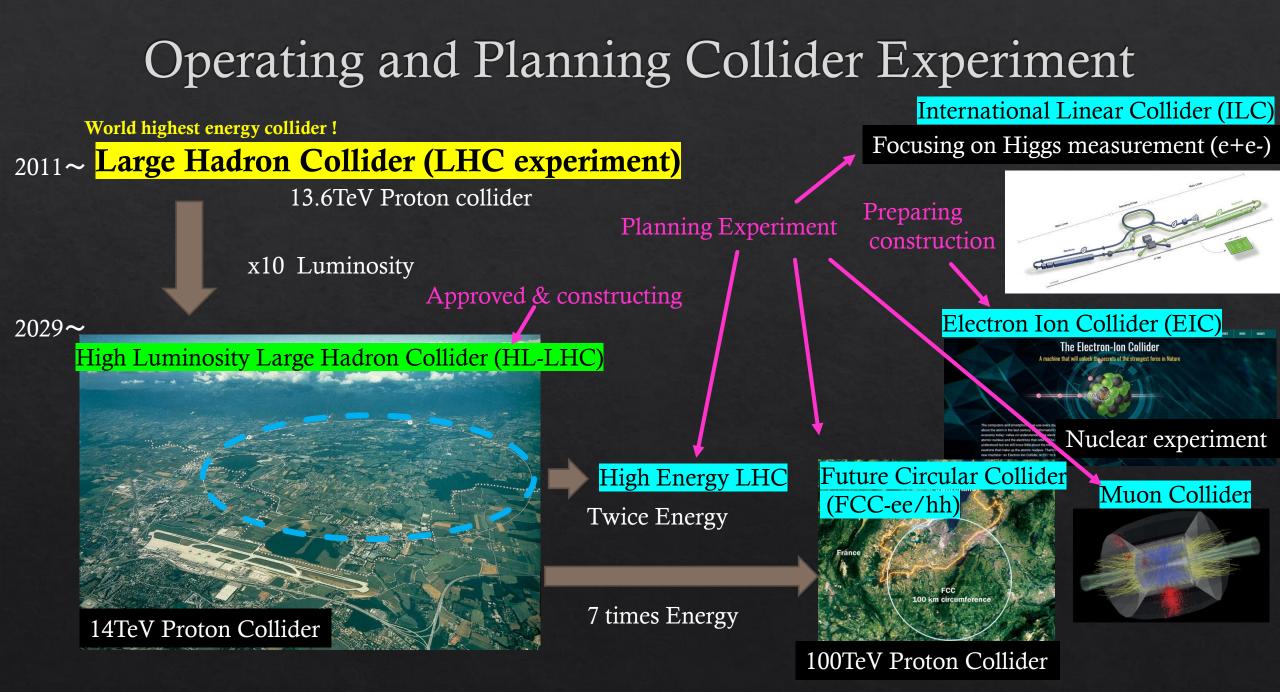
♦ So far we made a great success of precision timing silicon detector "AC-LGAD" R&D

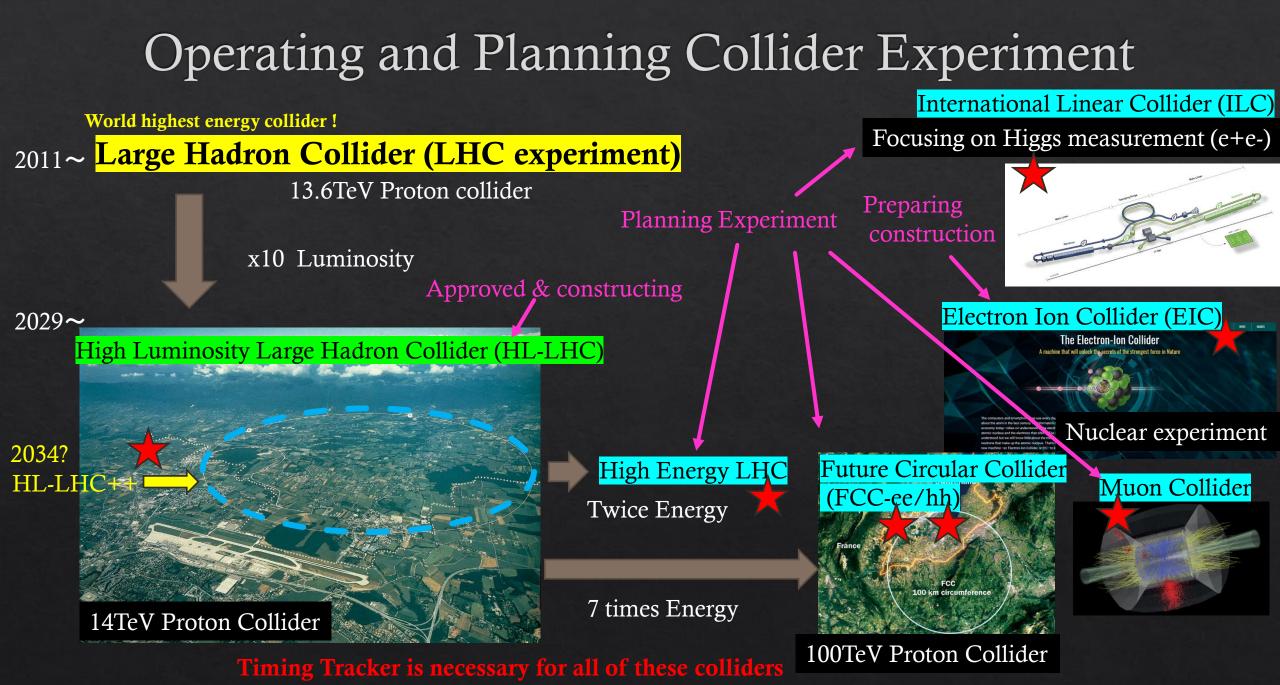

US-Japan Collaboration In 2


Japan side development

AC-LGAD sensor development (Hamamatsu Photonics K.K) Spatial resolution & radiation tolerance

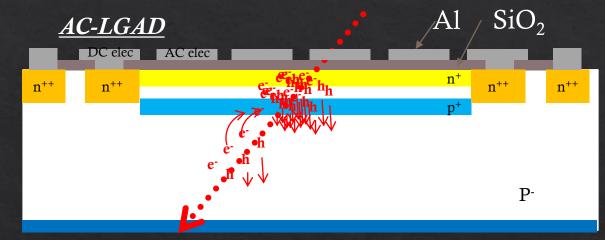


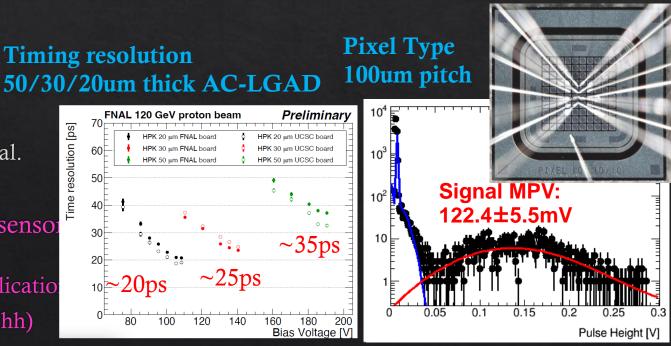




US-Japan Collaboration

Now




DRD3 week WG2

6/18/2024

Development of AC-LGAD detectors

- Development of AC-LGAD detectors as high timing and special resolution.
- ♦ Detailed achievement so far was presented in :
 - <u>https://indico.cern.ch/event/1402825/timetable/#93-</u> <u>development-of-precision-ti</u>
- ♦ Timing resolution achieved 20ps for 20um thick AC-LGAD (by discrete amplifier board.)
- Spatial resolution : two way approach
 - ♦ 500um pitch sensor with charge sharing
 - \diamond 100um pitch pixelated sensors
- Radiation tolerance study
 - ♦ Understanding and demonstrated acceptance removal.
 - ♦ Not yet found fully solved method
- So far we have successfully developed AC-LGAD sensor by HPK and BNL
 - ♦ Planning to install to EIC TOF detector for first application
 - ♦ Aiming other future collider (HL-LHC++, FCC-ee/hh)

LGAD development plan

- ♦ Goal : Detector with **10ps timing resolution and 10um spatial resolution**
 - Sensor development to Module development (low noise readout ASIC)
 - ♦ Hybrid type detector
 - ♦ Flip-chip sensor and ASIC \rightarrow Best performance + radiation tolerance
 - ♦ Monolithic type detector
 - ♦ Sensor and readout is on the same wafer→low material budget+better spatial resolution(?)

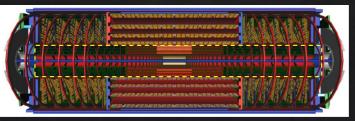
	Hybrid AC-LGAD	MAPS + gain layer	Monolithic AC-LGAD					
3 type New detector	 Best performance (timing reso.) Radiation tolerance ASIC development only. Readout ASIC Bump bonding Current development 	 Gain layer on existing MAPS detecotr Optimize gain in pre-amp? How to achieve uniformity? 	 AC-LGAD on SOI wafer Collect charge from bulk of transistor. Expected good gain uniformity Completely new detector. 					
	n" n" n" n" n"	low-dose n-type gain layer p+ epitaxial high-resistivity – p- substrate – p++	e e e e e e e e e e e e e e e e e e e					

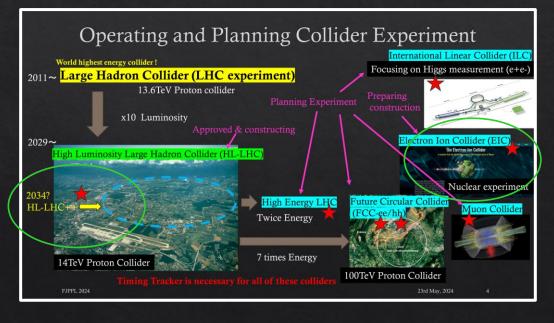
Members

Japanese Collaboration Members								
No. Name	Institution	Position						
1Koji Nakamura	KEK	Assistant Professor						
2Manabu Togawa	KEK	Associate Professor						
3Yuji Takeuchi	University of Tsukuba	Associate Professor						
4Masaya Miyahara	KEK	Associate Professor						
5Junya Nishino	University of Tsukuba	Master Graduate Student						
6Issei Horikoshi	University of Tsukuba	Master Graduate Student						
7Yuua Murayama	University of Tsukuba	Master Graduate Student						
U.S. Collaboration Members								
No. Name	Institution	Position						
1 Artur Apresyan	FNAL	Scientist						
2Alessandro Tricol	BNL	Senior Scientist						
3Abraham Seiden	UCSC	Research Professor						
4Zhenyu Ye	LBNL	Scientist						
5Davide Braga	FNAL	Senior ASIC Engineer						
6Cristian Pena	FNAL	Associate Scientist						
7Si Xie	FNAL	Application Physist						
8Irene Dutta	FNAL	Research Associate						
9Chris Madrid	FNAL	Research Associate						
10Gabriele Giacomini	BNL	Scientist						
11Gabriele D'Amen	BNL	Staff Research Scientist						
12Hartmut Sadrozinski	UCSC	Research Professor						
13Bruce Schumm	UCSC	Professor						
14Jennifer Ott	UCSC	Postdoctoral scholar						
15Simone Mazza	UCSC	Research Scientist						
16Ryan Heller	LBNL	Applied Physicist Research Scientist						

Plan for the development

			Year 1			Year 2				Year 3				
	Task	Performed by	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
AC-LGAD Production #1	Design	BNL, KEK												
	Production	BNL, HPK		Run 1 Produced										
	Irradiation	BNL, KEK												
	Testing	FNAL, BNL, LBNL, UCSC, KEK				Run 1 Tested								
MAPS MPW Run	Design	FNAL												
	Production	FNAL				MPW Produced								
	Testing	FNAL, BNL, LBNL, UCSC, KEK						MPW Tested						
AC-LGAD Production #2	Design	BNL, KEK												
	Production	BNL, HPK					Run 2 Produced							
	Irradiation	BNL, KEK												
	Testing	FNAL, BNL, LBNL, UCSC, KEK							Run 2 Tested					
MAPS full wafer production	Design	FNAL												
	Production	FNAL								MAPS Produced				
	Testing	FNAL, BNL, LBNL, UCSC, KEK											Full Reticl	e MAPS Tested

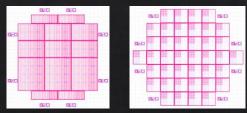

* Development of both Hybrid type and Monolithic type are in parallel.


Next install target?

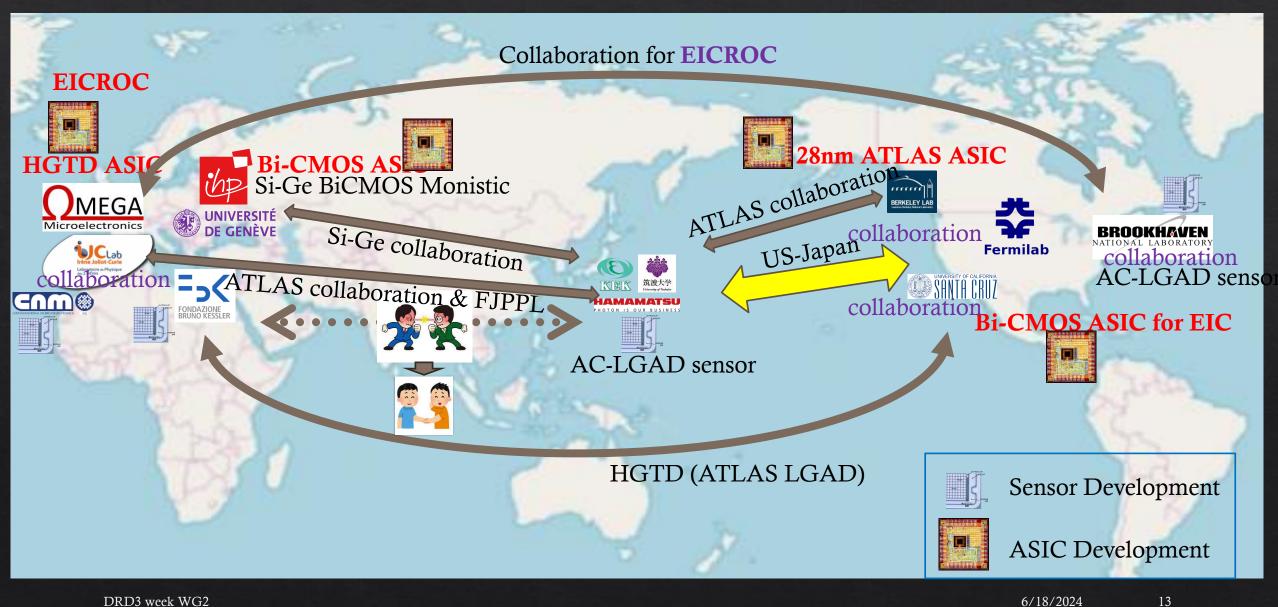
- ♦ Closest and higher possibility upgrade is HL-LHC++
 - ♦ Should we need to target of this detector ?

HL-LHC++:

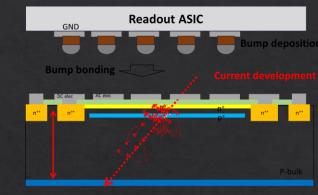
- Need more development for radiation tolerance.
- Optimization of pixel size to maximize physics performance.
- ASIC for pixel type detector is really challenging.
- Monolithic AC-LGAD will be developed as ideal case.



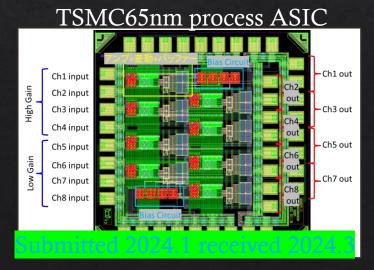
EIC:


- Providing AC-LGAD sensors (designed 500um pitch sensors and all parameters from us.)
- Not much development for sensor side necessary.
- OMEGA/IJClab are developing ASIC and readout

New submission :

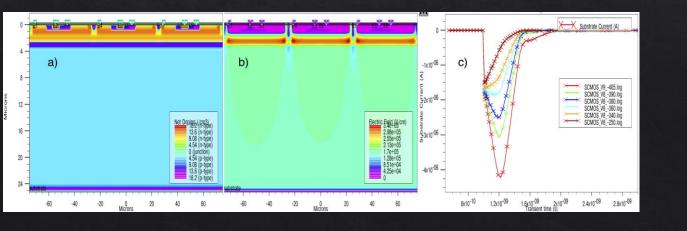


AC-LGAD collaboration


Hybrid type AC-LGAD

- Sensor development
 - \diamond Improvement of radiation tolerance \rightarrow just continue recent activity
 - ♦ Challenge to 10um thick detector (optimization of doping profile)
- ♦ ASIC development
 - ♦ Test with existing ASIC
 - ♦ Flip-chip to ITk ASIC (done.)
 - ♦ Itk ASIC have Precision ToT and ToA(1.5ns). Check uniformity
 - ♦ Recently observed huge noise (600e) due to impedance between electrode.
 - ♦ Si-Ge ASIC(developed by Uni. Geneva)
 - ♦ IHP130nm process (originally for monolith project)
 - ♦ Existence of 100um pitch pixel sensor with 10 x 10 matrix
 - ♦ Available compatible sensor produced. (Flip-chip ongoing.) test by WB.
 - ♦ ATLAS/CMS/EIC developed ASIC for LGAD detector (PAD type)
 - ♦ Development of new ASIC
 - ♦ Pixel detector (low capacitance) ASIC
 - TSMC65nm process (Only Analog part submitted last JPY)
 - \diamond (First version is) Just for my education or trial.
 - ♦ Designed 6.2ps jitter for 10fC signal @Cdet=1pF
 - ♦ Discriminator (Constant Fraction) and TDC design will be next version.
 - ♦ Will collaborate with RD53-LBNL TSMC28nm process ASIC or TimeSpot ASIC

Si-Ge ASIC with AC-LGAD testing @KEK



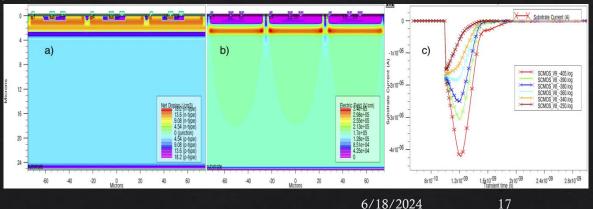
DRD3 week WG2

Monolithic LGAD

♦ MAPS + Gain

- ♦ Belle and ITDC collaborate with TJ
- ♦ US will make prototype with SkyWater (US)
- ♦ Just started TCAD simulation
 - ♦ How to make good gain uniformity?
- ♦ In the future, collaborate with (DRD3.1/7.6)

- SOI AC-LGAD
 - Middle to longer time scale
 - JPY 2024
 - TCAD simulation with input transistor and optimize the detector design.
 - Find vendor (XFAB, LAPIS, Tower, HPK)
 - 3 years term plan:
 - Minimal goal is to have Analog(Pre-Amp) readout detector and proof of consept.
 - Non-Pre-amp part of ASIC can be used hybrid type ASIC architecture.



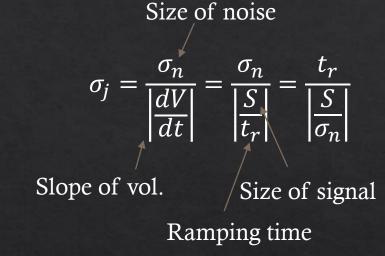
Idea for monolithic AC-LGAD detector

Hybrid Type AC-LGAD detector Monolithic type AC-LGAD detector **SOI** wafer Low resistivity Si SiO2 **Readout ASIC** GND High resistivity Si **Bump deposition** Bump bonding -**Current development** P-welN-we P-welN-wel P-welN-wel P-welN-well n+ p+ P-Bulk P-bulk

Why LGAD in the view of ASIC development?

- - ♦ Probably because LGAD have issue of spatial resolution and radiation tolerance
 - ♦ We are fighting with these issue and solved spatial resolution issue already (100um x100um pixel available)
- ♦ Low noise ASIC should of cause have benefit for LGAD
 - ♦ LGAD+Low noise ASIC should be perfect detector.
- ♦ Idea of using LGAD for reduction of power consumption
 - ♦ Only LGAD has internal gain (large signal with excellent S/N ratio)
 - ♦ Most of MAPS development teams think about placing gain layer. (Monolith also tried PicoAd)
- ♦ Future development should think about this situation.
 - ♦ Personal view :
 - ♦ 10-20ps fully uniform timing resolution.
 - ♦ 5e15neq/cm2 radiation tolerance.
 - ♦ (if possible) the device should be monolithic.

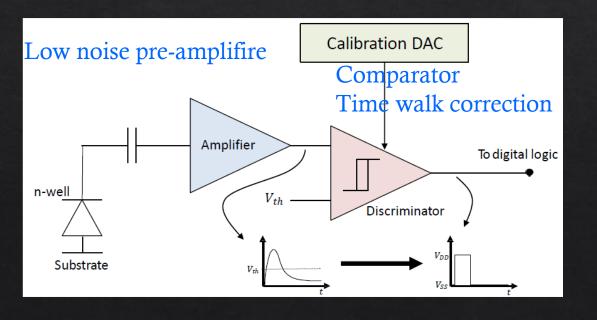
Two approach

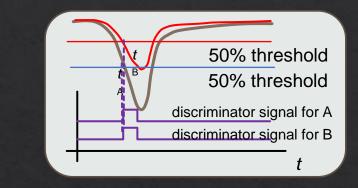

Readout ASIC (amplifier) with smaller noise

- ♦ 3D detector with CMOS ASIC
 - ♦ Time Spot

Monolithic detector with Si-Ge BiCMOS

Monolith (Univ. of Geneva) by IHP

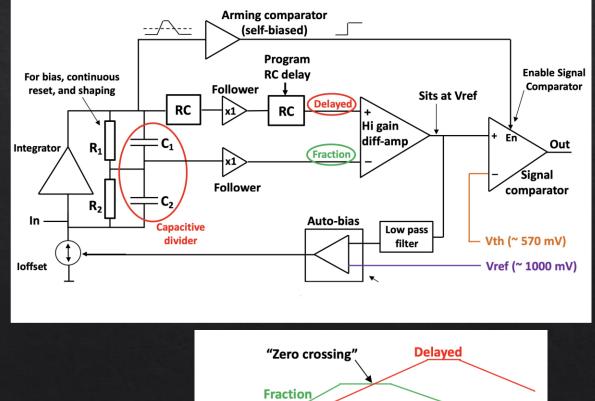

The Making sensor with larger signal and faster turn on



These two approaches may realize at the same time.

Readout Electronics

- Various ASIC developed for ATLAS/CMS/EIC detector (i.e. ALTIROC/ETROC/EICROC)
- Low noise pre-amplifier and Comparator with time walk
 correction is important for timing resolution.
 - ♦ Still signal size based time walk correction is popular method
 - Recently Constant Fraction Discriminator is implemented to the ASIC by Fermilab group.



Signal Comparator Enabled

19

6/18/2024

Arming comparator