Thin monolithic High Voltage CMOS sensors with excellent radiation tolerance

University of Liverpool – Jan Hammerich, Sam Powell, Eva Vilella, Ben Wade, Chenfan Zhang, Carleton University – Thomas Koffas, HEPHY – Thomas Bergauer, Christian Irmler, IFIC – Ricardo Marco-Hernández, JSI – Igor Mandic, NIKHEF – Uwe Kraemer, Jory Sonneveld, University of Bern – Silke Moebius, University of Sevilla – Rogelio Palomo

Motivation

- High radiation levels
 - − High Luminosity LHC \rightarrow > 10¹⁶ n_{eq}/cm²
 - − FCC-hh \rightarrow > 10¹⁷ n_{eq}/cm²
- New detector technologies
 - New detector technologies that need to be strategically developed and optimised for practical use

17-21 June 2024 – 1st DRD3 week on Solid State Detectors R&D @ CERN – Eva Vilella

Technology process

- 150 nm High Voltage CMOS LFoundry (LF15A)
 - P-substrate/DNWELL sensing junction (large collection electrode)
 - Pixel readout electronics embedded inside DNWELL
 - CMOS electronics in sensing diode & isolated from DNWELL with PSUB
 - Access to high resistivity substrates, thinning and backside biasing (complex wafer loan)

RD50-MPW chip series

RD50-MPW4

- Significant improvements
 - For high breakdown voltage and high radiation tolerance
 - Multiple ring structure around the chip edge
 - Substrate backside-biasing to high voltage
- **Fabrication details**
 - 150 nm High Voltage CMOS LFoundry (LF15A)
 - P-type substrate with nominal 3 k Ω ·cm high resistivity
 - $-280 \,\mu m$ thin
 - Backside processed via third party (complex wafer loan)

Chip contents

- Pixel matrix with FE-I3 style readout
 - 64 x 64 pixels
 - 62 μm x 62 μm pixels with large collection electrode
- Digital periphery (slow control, hit data transmission)
- Tests structures (e-TCT, DLTS)

Chip delivered in Q1 2024 **Evaluation is going very well See Bernhard Pilsl's** presentation for details

There is always a but...

RD50-MPW4

- The chip works very well
- It is a very nice technology
- We are taking right steps to demonstrate very high radiation tolerance
- Things can be further developed to tackle the challenges of
 - Timing resolution
 - Power consumption
 - Chip fill-factor
 - While maintaining if not further improving the radiation tolerance

- Experimental conditions
 - Current measured at about 10 °C
 - Chips irradiated to 1e14, 3e14, 1e15, 3e15 and 1e16
 n_{eq}/cm²
 - Current measured after irradiation and annealing for 80 min at 60 °C

This proposal – Boosting the technology parameters

Parameter	Current value	Research goals	
Spatial resolution	62 μm x 62 μm (pixel size)	62 μm x 62 μm (pixel size)	
Timing resolution	10 ns (time-walk)	2 ns (time-walk)	
Radiation tolerance	Several 10 ¹⁵ n _{eq} /cm ² , maybe 10 ¹⁶ n _{eq} /cm ² (currently under test)	> 10 ¹⁶ n _{eq} /cm ²	
Power consumption	Several 100 mW/cm ² (currently under test)	A few 100 mW/cm ²	
Fill-factor	Area hungry digital periphery Area hungry multiring structure	Reduced area digital periphery Reduced area ring structure	

This proposal – Tasks

Tasks	Description			
1	Technology simulation			
2	Chip design and submission			
3	Development of the specific DAQ with Caribou (e.g chip carrier board, firmware, software, integration with test beam instrumentation)			
4	Irradiation to high fluence and high dose			
5	Evaluation of the fabricated prototypes in the laboratory (e.g. I-Vs, pixel gain and noise, timing response, sensitivity to radioactive sources)			
6	Evaluation in test beams	We are open to new		
		interested in p in this p	participating project	

This proposal – Implementation plan

- One small area chip
 - To try a few different strategies to achieve our research goals
- One larger area chip
 - Going large is always a challenge

Detector community dedicated LF15A submissions

- What is in the deal with LFoundry?
 - Detector community joint submission(s) with several chips in the reticle
 - Price advantageous
 - Easy access to backside processing (potentially in-house at LFoundry)
 - Access to high resistivity wafers
 - Large number of fabricated wafers, so many samples for chip evaluation
 - Multi-layer mask type submission (MLM 1x3, maximum area is ~ 9 mm x 25 mm)
 - Including 6 metal layers and transistors

Challenges

- <u>No invoice split</u>! Invoice payment via one single customer
- To do a joint submission in 2025, LFoundry needs to be informed by September 2024
- All chips in the reticle <u>need to have compatible specifications</u> (e.g. passivation layers)
- Need to identify a supplier for dicing and perhaps for backside processing (no problemo)
- Need an agreement regarding IP protection between submitting institutes (no problemo)