CMOS Active SenSor with Internal Amplification – CASSIA

Tomislav Suligoj, Ivan Berdalović, Borna Požar

Micro and Nano Electronics Laboratory

Faculty of Electrical Engineering and Computing UNIVERSITY OF ZAGREB, CROATIA

Sebastian Haberl, Anastasia Kotsokechagia, Jenny Lunde, Heinz Pernegger

> **CERN EP - department** EP-ADE-TK

DRD3 week

Goal:

- Active sensor with in-pixel internal gain
- CMOS-compatible technology

Internal amplification:

- In-pixel integration with read-out electronics
- Avalanche multiplication:
 - Low-gain avalanche diode (LGAD)
 - Single-photon avalanche diode (SPAD)
- Strong signal: low-power read-out
- Improved signal-to-noise ratio
- High timing resolution, short response time

Implementation:

- Gain layer
 - Standard foundry CMOS layer
 - Additional process
- Sensor integrated with deep p-well isolation (to accommodate read-out electronics)
- Breakdown voltage engineering possible with Gain layer selection

CMOS Active SenSor with Internal Amplification – CASSIA

PWELL NWELL

NWELL COLLECTION ELECTRODE

PWELL NWELL Prototype: 180nm TJ CMOS image process technology LOW DOSE N-TYPE IMPI **GAIN LAYER** On-chip measurements: - EPITAXIAL LAYER -NW NW 10⁻⁴ 10^{-4} SUB ······ DPW *V_{BR}*= 60.5 V $V_{BR} = 108 \text{ V}$ 10⁻⁶ 10⁻⁶ NW sweep NW sweep Current (A) Current (A) SUB = 0VSUB = 0V10⁻⁸ 10⁻⁸ DPW = 0VDPW = 0V 10^{-10} 10^{-10} dark 10^{-12} 10^{-12} 100 70 80 90 110 120 30 40 50 60 70 80 NW bias (V) NW bias (V)

Gain layer 1

- Avalanche multiplication starts ~55 V
- Low leakage currents in the range < pA

DRD3 week

< pA

Gain layer 2

- Avalanche multiplication starts ~100 V
- Low leakage currents in the range < pA

CASSIA response to illumination – Gain layer 1

- Illuminated by continuous visible light
- avalanche multiplication of photogenerated carriers already at biases above ~39 V

- photo-to-dark-current ratio (PDCR) up to >10⁵
- gain reaching values >5000
- Fine gain adjustment by reverse voltage, 25 V span

CASSIA response to illumination – Gain layer 2

- Illuminated by visible light
- avalanche multiplication of photogenerated carriers already at biases above ~82 V

- photo-to-dark-current ratio (PDCR) up to >10⁶
- gain reaching values >5000
- Fine gain adjustment by reverse voltage, 30 V span

CASSIA light emission test

Fabricated CASSIA sensor micrograph

* SUBSTRATE

DRD3 week

CASSIA – LGAD & SPAD regimes

Same device, different operating bias

SPAD regime:

- Quenching circuits
- Signal processing circuits

CASSIA – SPAD regime

- single carrier can cause avalanche multiplication and high avalanche current *I_{aval}*
- voltage drop on load resistor R_L reduces diode voltage below V_{BR} and quenches avalanche

CASSIA – SPAD regime

miNel

- Passive quenching
- N-collection electrode negative pulse
- Without illumination: Dark Count Rate (DCR)
- DCR:
 - Shockley-Read-Hall (SHR) recombination dominant
 - Minimum sensitivity (noise limit)

CASSIA – SPAD regime, Gain layer 1

- External quenching resistor: $R_L = 150 \ k\Omega$
- On-chip measurements:

Gain layer 1

• $|V_{BIAS}| = 60 \text{ V}$

(~5 V above onset of multiplication)

DRD3 week

CASSIA – SPAD regime, Gain layer 2

PWELL NWELL

NWELL COLLECTION

ELECTRODE

NMOS PWELL DEEP PMOS NWELL

- External quenching resistor: $R_L = 150 \ k\Omega$ On-chip measurements: 0.5 10^{-4} 0 10⁻⁶ Current (A) 10⁻⁸ dark 10⁻¹⁰ $V_{BIAS} = -108 V$ 10^{-12} -3.5 -4 70 50 100 150 200 250 300 350 400 0 Time (µs)
 - Gain layer 2
 - *IV_{BIAS}I=* 108 V

(~5 V above onset of multiplication)

higher amplitude due to steeper breakdown?

CASSIA – SPAD regime, DCR

miNel

counting the number of dark pulses for central pixels of matrices

Gain layer	(V)	DCR (Hz/µm²)	
		V _{EX1}	V _{EX2}
#1	55	2.03	16.59
#2	105	0.061	0.084

- only collection electrode/gain layer junction considered for calculation of active area (worst case)
- State-of-the-art DCR at 300 K with Gain layer 2
- Low-defect substrate in 180nm TJ CMOS technology

CASSIA – Proposal to DRD3 WG 1

- more refinement over next months
- develop milestone/deliverable plan together with project consortium

Pixel design and simulation In-pixel electronics design Chip integration and verification Test system development Lab characterisations Irradiation studies Beam tests

Interests received form the following groups to participate in the project consortium

- CERN EP-ADE-TK
- University of Zagreb FER, MiNEL
- Centre de Physique des Particules de Marseille (CPPM)
- Universite de Strasbourg (IPHC)
- Universität Bonn
- KEK and Kyushu University
- IIT Madras Chennai
- University of Glasgow

The project is open to further collaborators who wish to contribute to any of the work areas

Contacts: <u>heinz.pernegger@cern.ch</u>, <u>tomislav.suligoj@fer.hr</u>

Summary

- In-pixel gain demonstrated in standard CMOS image technology
- Soft breakdown characteristics enables precise gain adjustment in wide voltage range
- Low dark current improves sensitivity
- Uniform light emission demonstrates avalanche multiplication in the active region
- Possibility of various implementation of gain layer
- Challenges: fill factor, perimeter gain, series resistance, radiation hardness....
- With this project we would like to contribute to the R&D programme of DRD3 CMOS specifically with the development of sensors with internal gain to address future challenges in
 - high signal-to-noise ratio for low-power sensor designs
 - high time resolution in smaller pitch pixel matrices for future trackers and timing/time-tagging detectors
 - extending radiation hardness, ...

