

HELLENIC REPUBLIC National and Kapodistrian University of Athens

DMAPS for measuring energy depositions and tracks of Galactic Cosmic Ray and Solar Energetic Particles

Presenter:

Haris Lambropoulos, Professor NKUA, lambrop@uoa.gr

1st DRD3 week on Solid State Detectors R&D, June 17, 2024 @ CERN

- DMAPS a "spin-in" from High Energy Physics
- Energetic particles in space environment:
- Have a range of energy depositions on Si from keV to tens of MeV (not only minimum ionizing particles)
- For ions energy deposition is not only along the track of the particle: It has rich spatial structure
- > The hit rate can be from 2 to 4 cm⁻²·s⁻¹ (GCR) to $55 \cdot 10^7$ cm⁻²·s⁻¹

Power consumption minimization is obligatory.

Low gain pixel design covers 40 fC - 9 pC

When charge Q_{in} hits the pixel:

- Vin drops abruptly and is slowly returned to Vreset by OPAMP loop¹
- Comparator flips: rst transistor is turned off and hit_flag signal is raised
- tra signal is generated locally as shown²
- Charge is transferred to a 500f capacitor³

idle power consumption \approx 35nA

Low gain pixel transient response to Q_{in} = 50fC, 1pC ,2pC ,4pC ,8pC

Low gain pixel layout

vssA = 0V, vddA = 1.8V vssD = 0V, vddD = 1.8V Low gain sensor response to light:

- Illuminating the sensor with a diffused laser locally from the top
- Filtering false hits from the pixel array

1.7 simulated pixel gain / = -0.0977x + 1.6527 Measured pixel output ٠ 1.5 1.3 bixel out(V) 0.9 0.9 Linear (Measured pixel output) 0.7 0.5 5 10 0 Qin (pC) Simulated pixel gain 109 mV/pC Measured pixel gain 98 mV/pC

Low pixel gain

$$\triangleright \quad Q_{in} = \Delta V_{in} \cdot C_{test} \cdot \frac{C_{det}}{C_{det} + C_{test}}$$

- Good agreement with simulation results
- Deviation possibly due to C_{in} value being different from what simulation predicts

High gain pixel design covers 0.5 fC = 50 fC

- Diode connected nmos for DNW bias¹
- Cc decouples CSA from leakage path
- CSA to integrate input charge over feedback capacitor C²_f
- CSA output compared against threshold voltage to produce timeover-threshold pulse³
- Comparator decoupled from CSA to allow for trimming of V_{TH}
- Comparator output used to charge C_{T2V} for time to voltage conversion⁴
- Same readout as the low gain pixel

idle power consumption \approx 7.5uA

High gain pixel layout

vssA = 0V, vddA = 1.8V vssD = 0V, vddD = 1.8V -28V

P-sub

High gain sensor characterization very first measurements (to be continued)

"sanity checks"

No leakage between analog and digital supply domain

Conclusion: No breakdown occurs for up to -40 V bias

DMAPS Specifications

	LOW GAIN PIXEL	HIGH GAIN PIXEL
Pixel size	200x200 um ²	100x100 um ²
Charge range	40fC - 9pC	0.5fC -50fC
Gain	109 mV/pC	17.5 mV/fC (Q _{in} >3fC) 120 mV/fC (Q _{in} <3fC)
Idle power consumption	35nA/pixel	7.5uA/pixel
Noise charge	1.5fC	200aC
Digitization	Embedded SAR ADC 11 bits @ 10 MHz	
Communication	SPI @ 10 MHz	
Readout mode	Only hit pixels/all pixels/specific pixel	

No charge amplifier ! idle power consumption ≈ 35nA @ 1.8 V = 63 nW/pixel For 16 cm² covered by 40000 pixels idle power consumption = 2.52 mW A very low power figure !!!

idle power consumption ≈ 7.5uA @ 1.8 V = 13.5 µW / pixel For 16 cm² covered by 160000 pixels Idle power consumption = 2.16 W High power consumption!

Low gain and High gain sensors combined cover a dynamic range from 0.5fC to 9pC

Common top-level architecture and read-out circuitry for the two sensors

LURAD: Comprehensive radiation monitor package for lunar mission

Measurement capabilities:

- Protons and ions spectra in the energy range from 40 MeV/u up to 2 GeV/u
- Discriminate GCR particle species with atomic number from Z=1 up to Z=26
- Electrons spectrum in the energy range from < 1MeV up to 20 MeV
- gamma photons spectrum in the energy range from 100 keV up to 10 MeV
- Neutrons spectra in the energy range from 100 keV to 300 MeV.
- Lineal energy spectra, dose, dose equivalent, quality factor

Mass 3 kg

Power: 17 W Power Bus: 28V

Interfaces: Spacewire, MIL-STD-1553

Dimensions in mm

Astronaut exposure in mixed radiation fields in space

MIDAS Detector

(excerpt from ICRP publication 123)

Quantities to be measured are radiation fluence rates, the energy distributions of different types of particles, and linear energy transfer (LET) distributions.

A collaborative effort

Natio

National and Kapodistrian UNIVERSITY OF ATHENS

1st DRD3 week on Solid State Detectors R&D, June 17, 2024 @ CERN

Acknowledgment

- We have received funding by ESA with the contracts:
- 4000119598/17/NL/LF "Highly miniaturized ASIC Radiation Monitor"
- 4000133574/21/NL/CRS "Comprehensive Radiation Monitor Package for Lunar Mission"

Thank you