R&D of a MAPS based Inner Tracker for the STCF

Lailin Xu University of Sci. & Tech. of China *On behalf of the STCF MAPS working group*

1st DRD3 week on Solid State Detectors R&D Jun 17-21, 2024

Super Tau Charm Facility (STCF)

- Energy range: E_{cm} =2-7GeV
- Peak luminosity $>0.5\times10^{35}$ cm⁻² s⁻¹ at 4 GeV
- Potential for an upgrade to increase lumi. and realize polarized beam
	- 1 ab⁻¹ data expected per year
	- Generate an unprecedentedly large number of τ leptons, particles made of c quarks
	- Important playground for study of QCD, exotic hadrons, flavor and search for new physics

Conceptual design

Solid angle coverage: 93

Inner tracker(ITK)

- $<$ 0.35% X_0 /layer
- σ_{xy} <100µm

Main drift chamber(MD

- σ_{xy} < 130 μ m
- $\sigma_{\rm p}/p \sim 0.5\%$ @ 1GeV
- $dE/dx \sim 6\%$

FRONTIERS OF PHYSICS 100000000000000000000000000000

REPORT
Volume 19 / Issue 1 / 14701 / 2024

STCF conceptual design report (Volume 1): Physics & detector

Front. Phys. 19, 14701 (2024)

Conceptual design of the MAPS tracker

- Physics requirements of the Inner Tracker:
	- Tracking efficiency: >99% @ $p_T > 0.3$ GeV; >90% @ $p_T > 0.1$ GeV
- A preliminary design of the MAPS based Inner Tracker (ITKM)
	- Three layers of silicon pixel detectors, with radii of 36mm, 98mm, 160mm (beam pipe: 30mm)
	- Acceptance: polar angle of 20º~160º
- Total area: 1.3m²

Geometry/layout still being optimized Might extend to 4 or more layers

6/17/24 Lailin Xu 4

Design targets

- Requirements on the STCF MAPS
	- Power consumption: $\leq 100mW/cm^2$
	- Material budget per layer: $\leq 0.35\% X_0$
	- Spatial resolution: $\leq 30 \mu m$
	- Time resolution: \leq 50ns (to deal with the pileup issue at high luminosity)
	- Time-over-threshold (TOT) measurement:
		- Time-walk correction
		- Correction of multi-coulomb scattering in track finding

Probability of pileup(with an event rate of 400 kHz ω *J/* ψ , bunch crossing of 4ns):

- 4% within 100ns
- 8% within 200ns

6/17/24 Lailin Xu 5

Sensor design

- Pixel size considerations
	- Higher priority on the power consumption than the spatial resolution \rightarrow larger pixel size to reduce the power consumption density
	- Three different designs
		- Pixel-based: analog connected small pixels $(1\times6 \rightarrow 1, 2\times3 \rightarrow 1)$ using metal lines
		- Strip-based: extended diode size in one direction
		- Superpixel based: digital connected small pixels

TCAD simulation

- Strip Sensor
	- Rectangular: $30 \mu m \times 180 \mu m$
	- Diode: $2\mu m \times 150 \mu m$
- Sensor capacitance
	- Single pixel: 2 fF
	- Pixel-based pixel: 12 fF
		- Also need to consider the capacitance of metal lines
	- Strip-based pixel: 30 fF
		- Much larger than 2 fF \times 6

Uniformer depletion zone along the strip \rightarrow beneficial for charge collection and timing

Design technologies

- Three different CIS technologies are being explored
	- Default: 180nm CIS with high-resistivity epitaxial wafers
		- Resistivity: $\geq 1k\Omega \cdot cm$; epi thickness: ~20 μm
		- Eg: Tower 180nm(ALPIDE)
	- 90nm CIS with low-resistivity epi wafers:
		- Resistivity: $\gtrsim 10\Omega \cdot cm$; epi thickness: 10~20 μm
	- 130nm CIS with high resistivity substrates:
		- Resistivity: $\geq 1 \text{k}\Omega \cdot cm$, no epi layers

Readout architecture

- In-pixel circuits
	- Analog amplifier, comparator
	- Priority readout
	- SRAM, ROM
	- Charge injection
- Digital readout
	- End-of-column driver
	- Column level priority logic
	- Data processing module
	- Serializer
	- PLL, LVDS
- Analog configuration
	- VDAC×2, IDAC
	- Bandgap, EoC current mirror
	- \vert ²C
- Test points

In-pixel front-end: analog

- Analog amplifier & current comparator(similar to the TJ-Monopix2 frontend)
- Simulated performance $(30\mu m \times 180\mu m$, strip-based sensor)
	- In the timing measurement mode: Threshold=309.0 e⁻, ENC=11.4 e-, Mismatch=5.7 e⁻
	- Power consumption: \sim 800 nA/pix, \sim 26 mW/cm²
	- Δ ToT/ ΔQ_{ini} =4.8 μ s/ke $^{-}$

6/17/24 Lailin Xu 10

AVDD

Amplifier _{AVDD} | Comparator_{DVDD}

In-pixel front-end: digital

TOKENOUT

1

0

1

0

1

 $\boldsymbol{0}$

1

0

1

0

- In-pixel digital circuits
	- Priority readout based on TOKEN
	- Readout scheme similar to ATLAS FE-I3
	- Timestamp clock: 20MHz
	- 8-bit leading-/falling-edge
		- Can be optionally turned off
	- Readout clock: 10MHz

Peripheral readout

- EoC data readout circuit
	- Grouped columns with each group readout in parallel to reduce waiting time
	- Readout rate >29.6 MHz/Chip, 40-bit/Hit(55-bit/Hit after frame encoding)
	- Bandwidth: 800Mbps×2

- Data processing unit
	- Timestamp calibration
	- Column group MUX
	- Async FIFO
	- Frame builder
	- 8b10b encoder
	- **Serializer**

Power density estimation

- Estimated power consumption extended to the full scale chip $(\sim 2 \text{ cm} \times 2 \text{ cm})$
	- Strip-based: 55.7 mW/cm²
	- Pixel-based: 46.2 mW/cm²
- Expected to reach the target of \sim 50 mW/cm²
	- With the potential to use air cooling

Prototype chips

- Designed 4 prototype chips based on the TJ 180nm technology
	- Chip 1: ALPIDE-like small pixels, 0/1 digital readout
	- Chip 2: large pixels $(96 \mu m \times 60 \mu m)$, Strip-based + Pixel-based) with TOA+TOT readout
	- Chip 3: large pixels $(170 \mu m \times 31 \mu m)$, Strip-based + Pixel-based) with TOA+TOT readout
	- Chip 4: 3T analog readout (5 types of sensors)

Total area: 5 mm×5 mm Submitted in 2024 Q1

6/17/24 Lailin Xu 14

Alternative designs: 90nm CIS

- Front-side illuminated (FSI) COMS process(FCIS90)
	- Low resistivity epitaxial wafer
	- 4-metal layers
- Back-side illuminated (BSI) COMS process(BCIS90)
	- Low resistivity epitaxial wafer
	- 6-metal layers

Submitted in 2024.5

FCIS protype chips: 10.4 mm×3.0 mm

- Chip1: MAPS
- Chip2&3: 3T sensors

Chip1 Chip2 Chip2 Chip3 Chip3

BCIS chips: 7.0 mm×3.0 mm

- Chip1&2: 3T sensors
- 6 test pixel for analog amplifier verification

6/17/24 Lailin Xu 15

90nm design: in-pixel circuit

• In-pixel VCO

- Benefit from the smaller process node(180nm \rightarrow 90nm)
- High timing resolution with a low power consumption

- TOA counting and no calibration needed
- Timing
	- 8-bit Gray code for the leading edge
	- 8-bit Gray code for the falling edge
	- 6-bit for the leading edge VCO
	- 6-bit for the timestamp LSB interval
- Simulation shows an expected timing resolution of about 6ns

G

 $H V_{RESET}$

SENSOR

ToT Correct

 $\sqrt{\frac{D}{D}}$ 12-bit

Token & Read Logic

VCO Control Logic

ROM×8

 8 \sim 1 24

SRAM×16

I buffer ×36

READ

8-bit Time Stamp 36-bit Data Bus

Alternative designs: 130nm CIS

- 130nm CIS
	- Only support high resistivity substrate(no epitaxial layers)
	- 6 metal layers and support deep p-well
- Four prototype chips in total, to be submitted in 2024.7
	- Chip1: Large sensor, ToA/ToT readout
	- Chip2: Small sensor, ALPIDE-like
	- Chip3: 3T sensors with analog readout
	- Chip4: Small sensor, readout based on superpixels

6/17/24 Lailin Xu 17

130nm MAPS design with superpixels

- Small pixels:
	- Advantages: low capacitance, good S/N, charge collection and timing
	- Disadvantages: too many readout channels, high power consumption
- Strip-based pixels or analog connected small pixels can reduce the number of readout channels, but still have larger capacitance P-WELL Spacing P-WELL \bullet \bullet \bullet \bullet \bullet \bullet
- How to make use of the advantages of small pixels but to keep the power consumption low? Superpixels!

- Each pixel has its own front-end analog
- Simply combining adjacent pixels with FastOR would lead to TOT loss
- Solution: Combining non-adjacent pixels P1_DIS

130nm MAPS design with superpixels

- Combining non-adjacent pixels to prevent ToT loss
- Superpixels with a 6×12 pixel array
	- 6 sets of identical digital readout logic(6 superpixels)
		- OR of pixels with odd and even indices separately
	- When cluster size $<$ 3 \times 4, no ToT loss occurs
		- with an equivalent spatial resolution of 1×1

Summary

- MAPS-based inner tracker is a promising option
	- Power consumption: $\leq 100mW/cm^2$
	- Low material budget per layer: $\leq 0.35\% X_0$
	- Spatial resolution: $\leq 30 \mu m$
	- $-$ Time resolution: \leq 50ns
- Prototype chips design finished and submitted
	- Based on the 180nm HR epi technology
- Also exploring alternative CIS technologies
	- 90nm CIS with LR epi
	- 130nm CIS with HR substrate

Backup

Collider experiments

Key Questions To The Strong Interaction

The key questions to the strong interaction

- What is the origin of observable mass (mass of hadrons)?
- How are hadrons formed, and what is the hadron structure?
- What is the essence of asymptotic freedom and color confinement?

The primary task of particle physics:develop understanding of the laws of nature at a more fundamental level.

 \rightarrow Requires a coordinated multi-dimensional program: precise theoretical predictions for observation, experimental measurements with state-of-the-art sensitivities and well-controlled systematic errors. \rightarrow STCF can play unique role to this primary task!

Physics opportunities with STCF

STCF can improve the current precisions of many important measurements, and sensitivities of many new physics searches by 1-2 orders of magnitude. Some have exceeded theoretical expectations \rightarrow Great potential to discover new physics!

Violation of symmetries(CP, CPT)

Violation of lepton flavor, baryon number, flavor-changing neutral current processes (LFV, BNV, FCNC)

6/17/24 Lailin Xu 24

Spectrometer Design Requiremen

Super high lumin

Benchmark physics requirements

Radiation level

• Simulated radiation level

NIEL: $\sim 10^{11} \text{ n}_{eq} / \text{cm}^2/\text{y}$ TID: ~0.35MRad/year

FCIS90: In-pixel circuit

- Layout of one pixel
	- $-180 \mu m \times 30 \mu m$
	- Analog and digital part separately placed on two sides of the sensor

FCIS90: In-pixel circuit

- In-pixel VCO
	- High timing resolution with low power consumption

- VCO starts once the leading edge of the hit signal arrives
	- TOA counting and
	- No calibration needed
- Timing
	- 8-bit Gray code for the leading edge
	- 8-bit Gray code for the falling edge
	- 6-bit for the leading edge VCO
	- 6-bit for the timestamp LSB interval
- Simulation shows an expected timing resolution of about 6ns

FCIS90: Periphery

- Provide timestamp and control for the pixel matrix
- Read out hit position and timing of the pixel matrix
	- 32-bit global timestamp
	- Readout rate: 500 Mbps×2

GSMC MAPS design—Chip4

GSMC MAPS design—Chip4 frontend

- Frontend circuit
	- Analog amplifier & current comparator
	- Similar to the Monopix2 frontend
- Simulation results
	- Threshold~153 e⁻
	- $ENC~5.1 e^-$
	- MISMATCH~5.8 e-
	- Analog power consumption~120 nA/pix
	- Timing response<81 ns(Qinj=400 e-)
	- $ΔToT/ΔQin=189$ ns $/100$ e

GSMC MAPS design—Chip4 digital readout

- Multiple pixels share readout logic \rightarrow adequate circuit area
	- Start-stop VCO in super pixels
		- Record fine ToA @500 MHz
		- Almost no static power consumption
		- 5-bit fine ToA, 8-bit coarse ToA, 8-bit ToT

6/17/24 32 Lailin Xu