

Frédéric Morel on behalf of IPHC teams

IPHC has a full range of MAPS expertise

Sensitive layer **Collection node** Digital conversion Digitisation **Digital front-end & back-end** Read-out architecture **Register Transfer Level** Top description Integration Synthesis, Layout Verification **Design Rule Checking** Foundry support DAQ, Control, data transfert systems design Test systems prototyping **IP** validation **Functional tests** Physical characterisation Ø TOOLS Production tests Laboratory tests Beam tests Board/flex component population tool design ASIC/wafer probe testing Module validation Manual/automatic assembly Bonding 2D/3D Metrology

- Based on the expertise of:
 - □ C4PI: MAPS facility
 - Physics groups: PICSEL (FCC), ALICE, Belle II
- C4PI a board team of engineers and technicians:
 - □ 6 in analogue design and process
 - **D** 7 in digital design and verification
 - □ 6 in test and characterisation
 - □ 3 in microtechnics and integration
 - □ 5 to 10 students
 - PhD, internships and apprentices
- Physics groups are essential:
 - Scientific drivers
 - Analysis expertise

Next generation detectors need new concepts:

- Fast development cycle
- Low risk project

Need expertise on large scale sensors:

- Size vs performances
- Tools and Methodology (DoT, UVM, ...)

MIMOSIS — CBM-MVD

- □ Fully designed at C4Pi
 - Collaboration with IKFrankfurt & GSI
- \Box 5 µm 5 µs 20 (70) MHz/cm² continuous read-out
 - Modified process & AC-diode (full or partial depletion)
- □ Series of submission: $2017 \rightarrow 2025$
- More in M. Deveaux's talk
- OBELIX Belle II-VTX
 - Design within a wide collaboration:
 - Uni.Bergamo, Uni.Bonn, CPPMarseille, Tech.Uni.Dortmund, HEPHY-Vienna, IFIC-Valencia, INFN-Pavia, KEK-Tsukuba
 - \Box 10 µm 50 ns 120 MHz/cm² triggered read-out
 - Modified process & DC or AC-diode (full depletion)
 - □ Started 2022: 1st version in 2024
 - □ More in M. Babeluk's talk

TIIX

- □ Small size prototype (5x7 mm²) for ion tracking & identification
- Design with: IP2I-Lyon
- \Box 12 μm / 10 ns / 100 kHz/cm² continuous read-out
 - linear dynamic up to ~800 kefor energy measurement over a wide range
 - Modified process (full depletion)
- □ Series of submissions: $2020 \rightarrow 2024$
- QUARTPIC submissions
 - Multi-project engineer runs organised by C4Pi
 - Include internal R&D with small chips
 - Mostly focus on DRD7 activities
 - □ 1st run 2021 (French projects + China)
 - 2nd run 2024 (French projects + CERN + China)
 - □ 3rd run under discussion for 2025

NUM IN CONTRACTOR AND INCOMENDATION OF A STATE OF A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTI				
				and the state of t

Technological R&D in Tower 65 nm: Charge collection study

- CE65 chips
 - □ Small matrix (2x2 mm²) exploring new process
 - □ Simple architecture:
 - Analog output
 - Rolling shutter readout
 - Variations on:
 - Process Standard—Modified—Modified with gaps
 - Diode arrangement (squared or staggered)
 - Pitchs 15—18—22.5 μm
 - □ Series of 2 submission 2021 and 2023
 - Partners share analysis and measurements
 - IPHC CTU Prague UZH Zurich

Process	Pitch (µm)	Spatial Res. (µm) Tel. res. Subtracted (2.1 µm)
GAP	22.5	~5.1
GAP	18	~4.1
GAP	15	~3.2
STD	22.5	~2.4
STD	18	~1.8
STD	15	~1.3

Only square diode arrangement

Process — GAP Pitch — 22.6 µm

SPARC

- □ Small prototype (2x2 mm²) for new matrix read-out
- Design with: IRFU-Saclay
 - Contribution from CERN-EP R&D & ALICE-ITS3 (DPTS pixel front-end)
- □ Full asynchronous read-out logic
 - Clockless 20 ns time-stamping
 - ~10 mW/cm² in matrix
- □ 1st submission 2024

- MOSAIX ALICE-ITS3
 - □ Wafer scale sensor ASICs with stitiching
 - Ultra-thin and bendable: 50 μm
 - Tower 65 nm
 - 5 μm 2 μs ~6 MHz/cm² continuous readout
 - □ Series of submission: $2021 \rightarrow 2025$
 - Large design team
 - □ IPHC design effort:
 - Responsibility of matrix integration (DoT)
 - Contribution in analogue biasing

VEPP23: ALICE ITS3: a bent stitched MAPS-h

frederic.morel@iphc.cnrs.fr - 1st DRD3 week on Solid State Detectors R&D

October 5th 2023

- IPHC has been involved in MAPS R&D since 25 years
 - Strong expertise on several aspects
- Interest in vertexing and tracking development
- Focus on two technologies
 - □ Tower 180 nm is a well-established technology
 - Tower 65 nm is where future cutting-edge developments are made
- Involvement in
 - DRD3 for RG1 (position resolution) RG3 (readout for large tracking area)
 - DRD7 WG6 for imager technology access

frederic.morel@iphc.cnrs.fr - 1st DRD3 week on Solid State Detectors R&D

- Time to read an event for different physical events
 - **D** 2 different topologies
 - 2->1 and 512->1
 - Large number of events are read in less than 7 ns
- Tens of ns time stamping at column level is achievable

J. Soudier PhD

Technological R&D in Tower 65 nm: Readout study