Large fill factor DMAPS development at PSI

Hans-Christian Kästli 1st DRD3 week on Solid State Detectors R&D 17. June 2024

Motivation

- PSI high energy physics group has developed the readout chip, the sensor and a bump bonding process for the CMS pixel detector phase 0 and phase I
 - Gained large experience in mixed signal chip design and systems design
 - No chip development for phase II upgrade
- Started general R&D on DMAPS for future applications in smaller experiments
 - A few potential applications for inhouse experiments at PSI
 - Targeting also applications outside the field of particle physics (solid state physics and environmental research)
 - Main motivation is low material budget, simpler detector design without bump bonding
 - Typical specifications are: relatively low data rates, low radiation environment, low power (operated in vacuum) and timing information of O(100-200ps)

Reminder: DMAPS Types

Large fill factor (area of collection electrode)

Large sensor capacitance

- higher noise, power needs
- Shorter drift paths, higher and more uniform drift field → +for timing, + rad hardness
- X-talk issues from electronics into collection node

TSI, AMS, LFoundry 150

Small fill factor

Small sensor capacitance

- less noise, power needs
- Fast and larger signals \rightarrow + for timing
- Longer drift paths and low field regions → -for timing, - rad hardness

LFoundry 110, ESPROS, TowerJazz

DMAPS development at PSI

17. June 2024

History

- Started with general R&D in 2019
 - Gain experience with DMAPS
 - Gain experience with ToA measurements (time of arrival)
 - Combine the two above
- Prototype test chips in two technologies
 - Small fill factor design \rightarrow LF 110 (MoTiC)
 - Modified CMOS process in collaboration with INFN
 - Ph. D. thesis Stephan Burkhlater: <u>https://doi.org/10.3929/ethz-b-000648047</u>
 - Vertex2023 A. Ebrahimi: https://agenda.infn.it/event/35597/sessions/27384/#20231018
 - Not covered in this talk. Currently no work ongoing
 - Large fill factor \rightarrow TSI 180 (TSI-R4S), later switched to LF15A
 - Subject of this talk

Large fill factor design

- TSI 180nm HV CMOS process
- Received first chip with sensor (high res wafer) in 3/2023
- Desy beam test in 6/2023
- Learned a lot about the first prototype
 - X-talk issue(s) identified (as other groups working with large fill factor designs reported)
 - With some operational tricks reached threshold as low as 1200e-(would not be possible with full scale chip and high data rate)
 - Data quality nevertheless not very good. Spatial resolution not better than binary. Analysis ongoing.
- Wanted to address these issues in 2nd iteration
- During design phase TSI went out of business 11/23

Translation to LF15A

- Alternatively AMS (fully compatible to TSI) could produce it
 - No PDK available yet. Will not submit a design without full simulation in original PDK
 - Unclear how the availability is in the future
- Looked into LF15A
 - Very similar process
 - Used in HEP detector community
 - Only one MPW this year (May).
 - Needed fast decision and translation of TSI design
 - Redesign turned out to be straight foreward and rather quick. But again first time submission from us in this technology.

 \rightarrow Some question marks.

 \rightarrow No large area chip, need some experience first in MPW.

May MPW Submission

- Tape out date was May 6 2024
- MPW with 5x5mm² area
- 4x5 mm² DMAPS chip
- 1x5mm² sensor test structures
- 6 metals, deep N-well for charge collection and isolation, deep P-well for isolation
- High res wafers (~3 kOhm cm) supplied by LFoundry
- Post processing:
 - Thinning to 150 um:~12ke- signal (thinner sensors possible, but risk of breaking wafer increases)
 - backside p+ implant (much more uniform drift field, overdepletion possible →velocity saturation. Good for timing)
 - backside metalisation (protection from very sensitive back side)

Sensor variations

Guard ring variations

Edge TCT

DMAPS chip Panther

- 75µm x 75µm pixel.
- 48 rows, 3x14 columns:
 - 3 flavors of preamps, optimized for best timing, lowest power and highest S/N
 - No universally best preamp possible. Need to choose/optimize for each specific application
- Pixel has preamp, tunable discriminator, digital logic (kept minimal) and S&H circuit with analog PH readout
- TDC per column
- Triggered sequential, zero-suppressed readout
- Trigger output
- Most digital activity moved to col/row periphery. X-talk is a major issue in this technology!
- Enormous effort made to shield/decouple signals from extremely sensitive input node → my main concern

17. June 2024

LF15A pixel cell

- 75µm x 75µm pixel
- 3 flavours of preamps
- Discriminator with global threshold and 3 local trim bits, mask bit
- Sample & hold circuit for analog PH readout
- Injection circuit, analog and digital (for timing calibration)
- Column length: 48 pixel, ~0.36mm

Simulated timing performance

- Rely on post layout simulation. Have to learn how good this models reality (our first submission).
- Best case with high power setting (~640mW/cm²)
- Timewalk >3ke- at threshold of 1.5ke-: 5ns
 - With 6 bit PH measurement a time resolution of <100ps is possible
- Jitter: estimated as risetime/(S/N)
 - For 6ke- signal (50% charge sharing): risetime=2.2ns, S/N=16.5
 - Jitter <140ps
- Signal distortion from fluctuation of charge deposition/ drift field distortion: not known yet. Needs to be measured.
- Signal delay difference in column <1ns, can be calibrated
- Overall hope for time resolution O(200ps)

Outlook

- I expect the chips back by the end of the year (no dates known so far)
- Hopefully it works as expected. X-talk could be a major issue.
- If we reach a threshold <2ke-, X-talk is under control, simulation models and parasitics describe reality well we will continue developing a large area chip for real applications
- In the meantime we are studying specifications of potential applications and develop a strategy how to cover this. Potential applications at PSI are:
 - MuEDM, MuSR, PIONEER, Muography, many small scale experiments and instrumentation
- I am carefully optimistic that with this chip we can leave the steepest part of the learning curve behind us and can start to develop real detector devices.
- We would love to contribute to this community in the future and are open for any kind of collaboration