The ATLASPIX3 CMOS pixel sensor and module performance DRD3 Week CERN, 17 June 2024

Attilio Andreazza - Università di Milano and INFN For the ATLASPIX3 Silicon Tracker community

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Silicon Tracker Community

- China, INFN, KIT, UK Collaboration
- Groups interested in large area tracking systems for future Higgs Factories:
 - Silicon layers in front of central gas chambers
 - Silicon wrapper outside the central gas chamber (50-100 m²)
 - Full Silicon tracker
- Large area of Depleted CMOS Pixel Sensors
- Demonstrate the detector concept using existing sensor ATLASPIX3
 - aggregate sensors in larger area modules
 - assemble the detector in stavelets for system tests (DAQ and services)
- In parallel improving the sensor technology to the e⁺e⁻ collider environment
 - see this afternoon proposal

ATLASPIX3

ATLASPIX3 general features

- TSI 180 nm HVCMOS technology
- full-reticle size 20×21 mm² monolithic pixel sensor 0
- 200 Ω cm substrate (other substrates up to 2 k Ω cm also possible) Ο
- 132 columns of 372 pixels Ο
- **pixel size 50×150 μm²** (25×150 μm² on recent prototypes) Ο
- breakdown voltage ~-60 V Ο
- up to 1.28 Gbps downlink Ο
- 25 ns timestamping 0
- analog pixel matrix, digital processing Ο in periphery
- Both triggerless and triggered readout modes:
 - two End of Column buffers •
 - 372 hit buffers for triggerless readout •
 - 80 trigger buffers for triggered readout •

RD FCC Collaboration meeting, 28 novembre 2023

Laboratory readout systems

GEneric Configuration and COntrol System

- Versatile system for application with different chips
- Developed by KIT for their sensor development
- GECCO board:
 - LPC-FMC connector (160 pins)
 to FPGA readout board (Nexys Video with Xilinx Artix-7)
 - PCle x16 connector (164 pins) to DUT
 - 10 power connection + HV
 - Expensive components (DACs, injection circuit) on reusable board
 - Test points for all pins
- Controlling up to 4 ATLASPIX3 powered in parallel
 - managing 4-layer single-chip telescope
 - or a 4-chips module

Status on the silicon tracker demonstrator

ATLASPIX3 Performance

CSA

pixel

1.8V

R_{bias}

Pixel layout:

- Charge amplifier followed by a comparator
- Threshold tunable by a 3-bit DAC

System development for IDEA

line

BL

ATLASPIX3: DESY testbeam

- Two telescopes (**KIT** and **UK**) in standalone systems tested at **DESY** with electron beams
- For the presented data analysis
 - 3-6 GeV electrons beams
 - perpendicular beams
 - hit-driven RO
 - KIT and UK telescopes placed as in figure
 - HV scan for the UK telescope (2, 5, 10, 15, 20, 30, 40, 50 V)
- Data reconstruction
 - Corryvreckan
 - use L1 (ref), L2 and L4 as telescope planes for iterative alignment and tracks reconstruction
 - associate L3 as DUT plane
 - selected tracks with χ²/ndof<5
 - cluster associated if within 0.6mm from track interception

UNIVERSITÀ DEGLI STUD DI MILANO

ATLASPIX3: DESY testbeam results

• Uniform efficiency is achieved after the junction laterally reaches the p-well strips insulating the pixels: >99%

UNIVERSITÀ DEGLI STUDI DI MILANO

 Resolution ~11 μm, as expected from normal incidence beams, dominated by single pixel clusters

of cluste

1-pixel

cluster

- HV 2 V

HV 10 V

HV 15 V

HV 20 V

HV 30 V

HV 40 V

----- HV 50 V

clusters

fraction of

10

60

40

80 100 y_{track}-y_{hit} [μm]

Module concept

- Readout unit based on 4 chips
 - shared services among 4 sensors by common power connections and configuration lines
 - benefits of in-chip regulators to reduce connections
 - avoids complications with stitching
 - design based on ATLAS quad-modules
- Two configuration options
 - command decoder (LVDS, default)
 - SPI (backup)
- 4-layer flex hybrid
 - 2 power layers
 - 2 signal layers, impedance-matched lines

Status on the silicon tracker demonstrator

Quad-module performance

Threshold tuning and noise measurement on modules No change in performance compared to single chips

RD_FCC Collaboration meeting, 28 novembre 2023

Visible are the shadows of the data connectors

Shunt-LDO regulators

ATLASPIX3.1 can be powered serially using two shunt/low dropout regulators

- VinA -> VDDA / VinD -> VDDD
- GND of the analog and digital circuits are shorted.
- Regulator outputs are connected to VDDD/A.

Each regulator 6-bit DAC to adjust the threshold and output voltage:

- b0-b2(3-bit) -> the shunt threshold (nominal value ~ 2.34V),
- b3-b5(3-bit) -> the VDDD/A output tuning (nominal value ~ 1.92V)

Analog performance independent from biasing scheme

Shunt-LDO characterization

Analog & Digital Chip W5-14 Regulator Turn-on Curve

- **b0-b2 DAC pins** for threshold of shunt regulator
 - The VDDD/A voltages are regulated when input current ~275mA for (b0-b2) DAC=7, ~400mA for (b0-b2) DAC=0
 - b0-b2 are the pins to set the input current value when the voltage regulation starts.

- b3-b5 DAC pins for tuning of VDDD/A
 - The regulation turn-on value is after around 275 mA.
 - The regulated voltage value is ~1.9V for (b3-b5) DAC=7, ~2.1V for (b3-b5) DAC=0

System development for IDEA

RD_FCC Collaboration meeting, 28 novembre 2023

Conclusions and outlook

- ATLASPIX3 is a reticle-size, fully-featured depleted CMOS pixel detector
 - It provided full efficiency in test beam
- It has been exploited to understand the complexity of building large area CMOS trackers at future accelerators
 - Multi-chip modules have been successfully operated, as first step toward a prototyping of full system integration
 - Shunt-LDOs for serial powering configuration have been tested
- Now proceeding toward the realization of quad-modules compatible with the serial powering biasing scheme
 - Planning to test a multi-module serial power chain before the end of the year
- Detailed resolution studies will benefit by additional test beam data
 - More telescopes are being assembled within the collaboration
- A WP1 project proposal has been submitted to continue the activity while developing new improved sensors

