Radiation hardness and timing performance of MALTA monolithic Pixel sensors in Tower 180 nm

1st DRD3 week on Solid State Detectors R&D WG/WP1Lucian Fasselt17 June 2024

Content

- MALTA beam telescope @ CERN SPS
- Radiation hardness at $3 \times 10^{15} n_{eq}/cm^2$
- Timing resolution ~ 2 ns
- Depletion depth studies

• MALTA3

P. Allport (Birmingham), I. Asensi Tortajada (CERN), P. Behera (IITM), D.V. Berlea (DESY), D. Bortoletto (Oxford), C. Buttar (Glasgow), F. Dachs (CERN), V. Dao (CERN), G. Dash (IITM), D. Dobrijevic (Zagreb, CERN), <u>L. Fasselt (DESY)</u>, L. Flores Sanz de Acedo (CERN), M. Gazi (Oxford), L. Gonella (Birmingham), V. Gonzalez (Valencia), G. Gustavino (CERN), S. Haberl (CERN, Innsbruck), T. Inada (CERN), P. Jana (IITM), K. Kotsokechagia (CERN), L. Li (Birmingham), H. Pernegger (CERN), P. Riedler (CERN), W. Snoeys (CERN), C.A Solans Sanchez (CERN), T. Suligoj (Zagreb), M. van Rijnbach (CERN), M. Vazquez Nunez (CERN, Valencia), A. Vijay (IITM), J. Weick (CERN), S. Worm (DESY)

Origin of MALTA Based on R&D for ALPIDE

MALTA Chip

- 180 nm Tower CMOS imaging process
- 512 × 512 pixels
- Originally conceived for ATLAS pixel detector upgrade for HL-LHC
- Timing response within 25 ns
- Radiation hard up to $3 \times 10^{15} n_{eq}/cm^2$ (ALPIDE < $10^{14} n_{eq}/cm^2$)
- Asynchronous readout of binary hit info (see <u>talk tomorrow 9 am by C. Solans</u>)
- No TOT, only binary hit info
- High data rate >100 MHz/cm²

MALTA Pixel

- $36.4 \times 36.4 \ \mu m^2$ pixel size
- Thickness down to 50 μ m (up to 300 μ m)
- $3 \times 3 \,\mu m^2$ small collection electrode
 - → Small capacitance (< 5 fF)
 - \rightarrow ENC < 15 e⁻
- Low voltage (6 30 V)
- Low power (1µW/pixel)

MALTA2 modifications

- Improved Front-end
 - Enlarged transistors
 - Cascode stage
 - \rightarrow Lower noise
 - \rightarrow Higher gain

- Pixel variants: Gap in n-layer (NGAP) or extra deep p-well (XDPW)
 - \rightarrow Improved E-field and charge collection in pixel corners
- Epitaxial silicon (30 μm active) in 50 μm thick sensor for minimal material
- Czochralski substrate (100 to 300 μm)
 - Larger cluster size
 - Larger substrate voltage applicable
 - \rightarrow Improved radiation hardness

Gap in the low dose N-type implant

EPJC 83 (2023) 7, 581

MALTA telescope @ SPS

DRD3 | MALTA | L. Fasselt | 17 June 2024

B. Moser et al., ATL-ITK-SLIDE-2023-598

4/12

MALTA2 irradiation study up to $3 \times 10^{15} n_{eq}/cm^2$

Efficiency > 90 % recovered by substrate voltage increase

- Backside metallisation
 → good voltage propagation to substrate across chip
- Efficiency loss at pixel corners

<u>G. Gustavino et al., (VERTEX2023)048</u> <u>M. van Rijnbach et al., Eur. Phys. J. C 84, 251</u> (2024) DRD3 | MALTA | L. Fasselt | 17 June 2024

Track X pos [µm]

Track X pos [µm]

<u>M. van Rijnbach et al., Eur. Phys. J. C 84, 251</u> (2024) DRD3 | MALTA | L. Fasselt | 17 June 2024

6/12

difference in implantation dose,

approximately 70%.

MALTA2 Timing

Time since L1A: Time of arrival of leading hit in a cluster w.r.t. scintillator reference

- σ_t= 1.7 ns
 - scintillator jitter (~0.5 ns)
 - FPGA readout jitter (~0.9 ns)
 - Correction for signal propagation
- > 98% of hits collected within 25 ns window
- > 90% of hits collected within 8 ns window

G. Gustavino et al., (VERTEX2023)048


```
DRD3 | MALTA | L. Fasselt | 17 June 2024
```


Timing deteriorates with irradiation

- due to charge trapping
- slow collection from pixel corners

Timing improves for

Increase in substrate bias voltage

MALTA2 Timing

MALTA2 fulfills ATLAS ITk requirements in terms of efficiency and noise at $3\times10^{15}\,n_{eq}/cm^2$

High doping

Very high doping

<u>M. van Rijnbach et al., Eur. Phys. J. C 84, 251 (2024)</u>

Timing deteriorates with irradiation

- due to charge trapping
- slow collection from pixel corners

Timing improves for

- Increase in substrate bias voltage
- Very high doping prolongs "life-time" of continuous nlayer
 - \rightarrow 95 % of hits collected within 25 ns (for 3×10¹⁵!)
 - → greater homogeneity of the mean time of the hit across the pixel

Edge-TCT

Aim of study: Find depletion depth and cross check grazing angle studies with non irradiated, 30 μ m epitaxial sensor **IR laser** (1064 nm, 500 Hz, ~4 μ m beam width at focus)

- Special PCB with free access to edge
- Polished sensor edge
- Analog pixels readout with oscilloscope
- \rightarrow Active depth of ~30 μm (as expected for epitaxial sample)
- \rightarrow Agrees with grazing angle studies

Seed amplitude reconstruction from digital testbeam data

Aim of study: Understanding charge collection in complicated pixel **Method:** Cumulative Landau distribution fitted to efficiency spectrum

- Amplitude reconstructable as most probable value (MPV)
- $\sigma_{track} = 4.5 \,\mu\text{m} < \text{pitch } 36.4 \,\mu\text{m} \rightarrow \text{In-pixel resolution}$
- ΔR is distance to electrode at pixel center

Selection of in-pixel regions along pixel diagonal

In-pixel regions projected onto 2×2 pixel matrix

Results:

- Pixel center: ~1800 e- collected → 30.2 μm active silicon depth (as expected for EPI sample)
- **Pixel corner: ~900 e-** due to charge sharing and tracking uncertainty
- Charge reconstructed from **binary** data!
- Alternative to E-TCT or grazing angle studies

10/12

Mini-MALTA3

- $5 \times 4 \text{ mm}^2$ demonstrator with 64×48 pixels
- Pixel size 36.4 \times 36.4 μm^2 (same as MALTA2)
- Same front-end as MALTA2, no clock over the matrix
- Integrate time-stamping and data serialiser on chip in periphery
- Time-stamping logic at 1.28 GHz (for MALTA2 done in FPGA)
 → aiming for sub-nanosecond on-chip timing resolution
- Synchronization memory with 0.78 ns time resolution
- Fast clock generation with STFC PLL from 80 MHz clock
- Serialized high-speed output

Testing of the chip:

- arrived late 2023
- powered and consumption is within expected values
- Responding to the shift register slow control
- DAC scan results as expected

More details:

"Radiation hard read-out architectures" (WG1 C. Solans) Tue 9:00

D. Dobrijević et al., JINST 18 C03013 (2023)

11/12

20

10

MALTA beam telescope @SPS with $\sigma_s = 4.5 \ \mu m \& \sigma_t = 2.1 \ ns$

MALTA2 shows radiation hardness up to $3 \times 10^{15} n_{eq}/cm^2$

- > 98% efficiency
- > 95% of clusters collected within 25 ns (LHC bunch crossing window)
- Fulfills ATLAS ITk requirements for efficiency and noise

Depletion depth studies:

- Edge-TCT
- Grazing angle studies
- Amplitude reconstruction from binary hit data

MALTA3:

- Time-stamping logic on chip @ 1.28GHz aiming for **sub-nanosecond** timing
- Serialised data output in view of future detector integration

Future developments:

<u>"Radiation hard read-out architectures" (WG1 C. Solans) Tue 9:00</u>

"Interconnections and multi-chip flex developments" (WG7 A. Sharma) Wed 13:30

Latest publications

M. van Rijnbach et al., Radiation Hardness of MALTA2 Monolithic CMOS Sensors on Czochralski Substrates, Eur. Phys. J. C 84 (2024) 251, link

D.V. Berlea et al., Depletion depth studies with the MALTA2 sensor, a depleted monolithic active pixel sensor, NIM A 1063 (2024) 169262, link

F. Dachs et al., Quad-module characterization with the MALTA monolithic pixel chip, NIM A 1064 (2024) 169306, link

C. Solans et al., MALTA monolithic Pixel sensors in TowerJazz 180 nm technology, NIM A 1057 (2023) 168787, link

F. Dachs et al., Development of a large-area, light-weight module using the MALTA monolithic pixel detector, NIM A 1047 (2023) 167809, link

H. Pernegger et al., MALTA-Cz: A radiation hard full-size monolithic CMOS sensor with small electrodes on high-resistivity Czochralski substrate, JINST 18 (2023) P09018, <u>link</u>

J. Weick et al., Development of novel low-mass module concepts based on MALTA monolithic pixel sensors, JINST 18 (2023) C04003, link

D. Drobijevic et al, Future developments of radiation tolerant sensors based on the MALTA architecture, JINST 18 (2023) C03013, link

G. Gustavino et al., Timing performance of radiation hard MALTA monolithic pixel sensors, JINST 18 (2023) C03011, link

V. Berlea et al, Radiation hardness of MALTA2, a monolithic active pixel sensor for tracking applications, TNS 70 (2023) 2303-2309, link

M. van Rijnbach et al., Performance of the MALTA Telescope, Eur. Phys. J. C 83 (2023) 581, link

MALTA history Based on R&D for ALPIDE

STREAM			AIDA Ir CERN E	nova WP5 and EP R&D WP 1.2
ma olo estimation de la constantion de la constantistitation de la constantion de la constantion de la				
MALTA1 & MLVL	Mini-MALTA	MALTA C	MALTA 2	MALTA 3
MALTA1 & MLVL Jan 2018	Mini-MALTA Jan 2019	MALTA C Aug 2019	MALTA 2 Jan 2021	MALTA 3 2023
MALTA1 & MLVL Jan 2018 Large demonstrator Asynchronous readout Electrode size and reset mechanism evaluation	Mini-MALTA Jan 2019 Small demonstrator Process and mask modification	MALTA C Aug 2019 Slow control improvements on EPI and Czochralski substrates	MALTA 2 Jan 2021 New front-end Additional process modification	MALTA 3 2023 Large matrix Time tagging

Technology	180 nm Towerjazz	
Sensor area	9×18 mm ²	
Pixel pitch	$36.4 \times 36.4 \ \mu m^2$	
Thickness	50 - 300 μm	
NWELL		

Additional implant increases depletion zone and electric field

Fluence distribution for the ATLAS ITk

Fulfills requirements for ATLAS HL-LHC ITk pixel upgrade in terms of:

- Radiation hardness up to 3×10¹⁵ n_{eq}/cm² (~ HL fluence 10 cm from beam pipe)
- Efficiency > 95%
- Noise rate < 40 Hz
- Timing resolution of 2.1 ns

MALTA2 irradiation study up to $5 \times 10^{15} n_{eq}/cm^2$

Efficiency ~35 % recovered by substrate voltage increase

- $2x10^{15}$ 1 MeV n_{eq}/cm²
- $3x10^{15}$ 1 MeV n_{ed}/cm²
- $3x10^{15}$ 1 MeV n_{ed}/cm²
- $5x10^{15}$ 1 MeV n_{eq}/cm²
- $5x10^{15}$ 1 MeV n_{ed}/cm²

High doping Δ

100_E

90E

80 F

70 E

60 E

50

40 E

30

20 E

10E

0^L

Efficiency [%]

Efficiency ~50% recovered for higher doping on continuous n-layer MALTA2 Cz, 100 µm, fiducial region $5x10^{15}$ 1 MeV n_{eq}/cm² H-dop, NGAP Δ VH-dop, XDPW VH-dop, XDPW 10 20 30 40 50 60 V_{SUB} [V] NWELL COLLECTION ELECTRODE PWELL NWELL NWELL PWELL DEEP Very high doping

- EXTRA DEEP PWELL LOW DOSE N-TYPE IMPLANT EXTRA DEEP PWELL P- EPITAXIAL LAYER + SUBSTRATE
- VH-doping* of n-type implant improves charge collection at pixel center and corners
 - \rightarrow Improved overall depletion

*the doping level refers to the relative difference in implantation dose, approximately 70%. 17/12

DRD3 | MALTA | L. Fasselt | 17 June 2024

Amplitude reconstruction method from binary data

