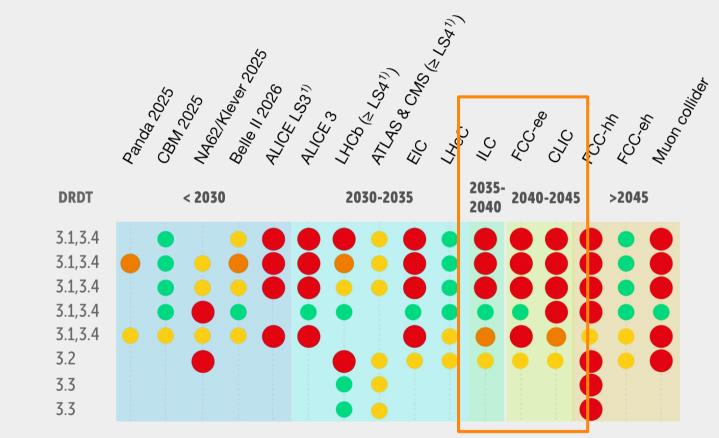
DRD3 WG1/WP1 Project Proposal Preparation Fine-Pitch CMOS Sensors with Precision Timing for Lepton Collider Experiments

M. Backhaus T. Bergauer A. Besson M. Bomben D. Dannheim M. Deveaux J. Dingfelder A. Macchiolo S. Spannagel P. Svihra

1st DRD3 Week 17 June 2024

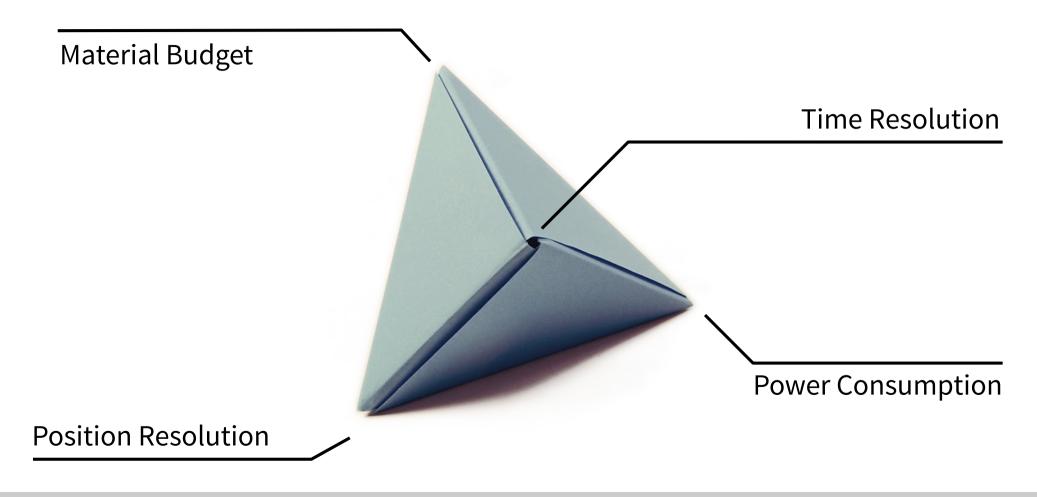
ECFA Detector R&D Roadmap


Technology developments needed for detectors at e+ e- Higgs-EW-Top factories in all possible accelerator manifestations including instantaneous luminosities at 91.2 GeV of up to 5×10³⁶ cm⁻² s⁻¹ and energies up to the TeV range

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Developments of Monolithic Active Pixel Sensors (MAPS) should achieve very high spatial resolution and very low mass [...] To achieve low mass in vertex and tracking detectors, thin and large area sensors will be crucial.

ECFA DRD – Vertex Detectors



Position precision Low X/X_o Low power High rates Large area wafers³⁾ Ultrafast timing⁴⁾ Radiation tolerance NIEL Radiation tolerance TID

Vertex detector²⁾

Challenges for Vertex Detectors @ Lepton Colliders

Project Goals & Scope

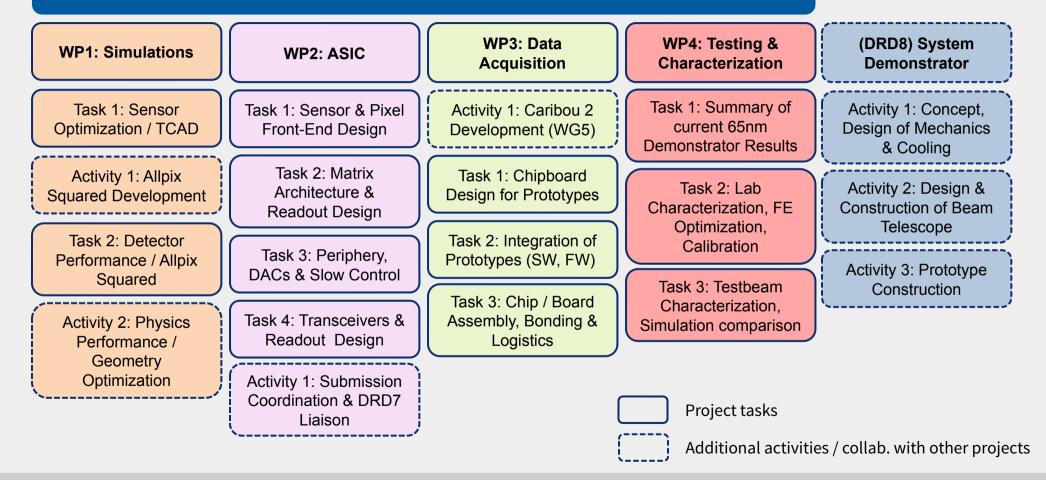
DESY.

- Simulation, development and evaluation of MAPS
- Development in 65nm TPSCo CIS process
- Targeting the vertex-detector requirements of future Lepton Colliders:
 - 3 µm single-point resolution
 - down to 5 ns time resolution (depending on chosen Lepton-Collider technology)
 - average power consumption below 50 mW/cm²
 - thinning to 50 µm, minimal inactive periphery area
 - sensor architecture scalable to a large-area detector system
- Development of new high-resolution sensors for beam telescopes as intermediate target Relaxed power-consumption (<500 mW/cm2) and timing requirements (100 ns)
- Staged approach allows further refinement of performance targets after next strategy update

Milestones & Deliverables

Number	Deliverable/Milestone Title	WP project #	Lead	Туре	Dissemination Level	Due Date
M1	Report on Demonstrators	4	DESY	Report	DRD3 report	Month 9 (Q1 2025)
D1 MPR2	Beam Telescope Demonstrator Matrix Submission 3 µm	1, 2	ІРНС (Prototype Full	Manual / Presentation column height	Month 24 (Q2 2026)
M2	Report on Demonstrator Matrix Characterization	3, 4	DESY	Report	Publication	Month 36 (Q2 2027)
D2 MPR3	Full Beam Telescope Sensor Submission	2, 3	ІРНС 🤇	Prototype	Manual / Presentation 2cm² sensor ——	Month 48 (Q2 2028)
М3	Report on Beam Telescope Sensor Performance	3, 4	DESY	Report	Publication	Month 60 (Q2 2029)
D3 ER	LC Vertex Sensor Demonstrator Submission	1, 2	ІРНС 🤇	Prototype	Manual / Presentation	Month 66 (Q4 2029)
M4	Report on LC Vertex Sensor Demonstrator Performance	3, 4	DESY	Report	Publication	Month 78 (Q4 2030)

Collaborative Work



This project will explore **synergies** with other proposed & running **projects utilizing TPSCo 65nm** This project will collaborate with several other DRD3 WGs as well as other DRDs:

- WG4: Monte Carlo as well as TCAD Simulations, simulation development
- WG5: Further development of Caribou DAQ system
- DRD7:
 - Support for access to technology, design / testing tools (WG7, Tools and technologies)
 - ASIC design, validation, submission support (WG6, Complex imaging ASICs and technologies)
 - IP blocks developed within project are made available to community in context of WG6
- DRD8: Possible collaboration on lightweight detector mechanics and cooling systems, including the possible construction of a demonstrator prototype

Fine-Pitch CMOS Sensors with Precision Timing for LC Experiments

Participating Institutes

Institute	Contact	Main areas of contribution	
APC Paris	M. Bomben	Simulations, testing	
Bonn University	J. Dingfelder	ASIC design, testing	
CERN	D. Dannheim	Testing, DAQ, ASIC design support (through DRD7)	
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations	
ETH Zurich	M. Backhaus	ASIC design, testing	
FNSPE Prague	P. Svihra	ASIC design, DAQ, testing	
GSI	M. Deveaux	Simulations, testing	
HEPHY Vienna	T. Bergauer	DAQ, testing, ASIC design	
IPHC Strasbourg	A. Besson	ASIC design, testing	
Zurich University	A. Macchiolo	Testing, DAQ, simulations	

Some of the resources are still to be confirmed by the institutes.

The project is **open to further collaborators** who wish to contribute to any of the areas or work packages.

Summary

- Proposing project for developing a LC vertex detector MAPS
 - Tackling vertex-detector requirements of future Lepton Colliders
 - Comprises simulation, development and evaluation of MAPS in the TPSCo 65nm process
 - Beam telescope chip as intermediate goal
- Proposal draft well advanced, goals, milestones & project structure mostly clear
- Currently 10 institutes participating Newcomers welcome to join, contact us!
- Continuing more detailed (resource-) planning over summer to finalize proposal